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Robust implementations of real time algorithms for maintaining the convex hull
of a dynamic set in the plane

SUMEET SHIRGURE , University of Southern California, USA

This paper documents the implementation details and the interface of a C++ software package that allows for maintaining the convex
hull of a dynamic set of points in the 2D plane. By maintaining the convex hull we mean the following things (a) point insertion and
point deletion requests are handled by updating the data structures in memory, and (b) said structures allow for effeciently querying
standard questions like determining whether another point lies inside the resulting convex polygon, finding tangents from an external
point, and finding the farthest points along a given direction. By real time we mean that the individual requests are handled quickly
and the time complexity analysis is not amortized over multiple queries. The presented software package is robust and exact, in the
sense that if geometric errors arise because of floating point imprecision, they will not be due to code written within our scope. In
particular if all numerals are exact to arbitrary precision, the code provided will always find the exact convex hull of a given set of
points, and answer queries exactly to given precision. This feature is possible due to the use of C++ template meta programming.
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1 INTRODUCTION

The set of dynamic convex hull problems is a class of dynamic problems in computational geometry. It consists of the
maintenance of the convex hull for input data undergoing a sequence of discrete changes, i.e. when input data elements
may be inserted or deleted. It shouldn’t be confused with the kinetic convex hull, which studies similar problems for
continuously moving points.

We will consider two settings for the dynamic hull. One where points are merely inserted into a dynamic set and not
deleted. We call this the "online" setting. The other is where points are both requested to be inserted and removed from
a dynamic set. We call this the (fully) "dynamic" setting.

Note that in the online setting once a point falls inside the interior of the hull it is no longer under consideration.
This allows us to discard parts of the old hull that are in the interior of the new hull. The same is not true for the
dynamic case, where points in the interior must be preserved for potential future computation.

There has been plenty of prior theoretical work : e.g the online version was solved optimally in [9] taking 𝑂 (𝑙𝑜𝑔(ℎ))
time for all requests; while the dynamic version was solved in [8] with a running time of 𝑂 (𝑙𝑜𝑔2 (𝑛)) per point
insertion/deletion and𝑂 (𝑙𝑜𝑔(ℎ)) query time for point in polygon/tangent/farthest point queries. 𝑛 and ℎ here being the
size of the set and the size of the hull currently respectively. It’s these algorithms that have been implemented along
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2 Sumeet Shirgure

with this paper. The papers in [1], [2], [7] give improvements over the classical literature, but are unwieldy in practice
due to high constant factors.

The papers in [3] and [5] give various applications for the dynamic convex hulls and semi-dynamic (deletions only)
hulls and respectively. The paper in [4] explores a problem in query sheduling in the context of database management
systems that uses an online hull structure. We also note that a possible application of a dynamic hull structure is the
"monotone windowed convex-hull" problem where we are to maintain the convex hull of a fixed-size window from a
stream of points, possibly ordered in one of the coordinates. Such problems might be of use in time series analysis and
forecasting. The hope is that the existence of a software library like the one presented will alleviate the need to rewrite
new code every time a new application is found.

The rest of the paper is structured as follows : Section 2 describes the C++ software interface for the online and
dynamic hull libraries. Section 3 discusses theory behind the implemented data structures and algorithms. Section 4
concludes the report by summarizing the contributions of this paper.

2 SOFTWARE INTERFACE

The presented software provides two headers, one for the online hull, and one for the dynamic hull. Both of them share
most of the C++ interface as shown below :

template <typename Field> class DynamicHull {

public:

void add_point(Point<Field> const&);

bool remove_point(Point<Field> const&); // not present in Online hull

std::optional< std::pair< Point<Field>, Point<Field> > > get_tangents (Point<Field> const&);

std::pair< Point<Field>, Point<Field> > get_extremal_points(Point<Field> const&);

private:

// rest of the data structures and algorithms

};

The add and remove points return wether the operation was successful. Here the std::optional signifies that the
return value may or may not be present. In this implementation it’s absent exactly when the point input to the function
is strictly inside the hull. The get_extremal_points function returns the point or points on the line segment that
maximizes the dot product along the provided direction.

The template argument typename Field is key to the robustness mentioned earlier. The implementation doesn’t
assume an upper limit on the precision of any arithmetic by declaring int or double in its internals. All that is assumed
about the Field type is that it is a total order like the integers or the reals, that has “equality” and the “less than”
operator defined, and is capable of forming a 2D vector space.

3 THEORY AND ALGORITHMS

This section will describe some theory and notations used in the rest of the paper to describe convex hulls exactly. The
notations and definitions here directly translate to code in our implementation.

An ordered set is a set with some intrinsic order. It is denoted here as (𝑒0, 𝑒1, ...𝑒𝑛−1) This set has 𝑛 elements and
there is some total order among its elements. A proper prefix of it is some set (𝑒0, 𝑒1, ..., 𝑒𝑖 ) for 0 ≤ 𝑖 < 𝑛. A suffix is the
complement of a proper prefix. Prefixes and proper suffixes are defined analogously.
Manuscript submitted to ACM
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Robust implementations of real time algorithms for maintaining the convex hull of a dynamic set in the plane 3

Lowercase alphabets like 𝑝 denote a point (𝑝𝑥 , 𝑝𝑦) in the 2D vector space formed by the given field 𝐹 2. Let ≺ denote
the lexicographical ordering 𝑝 ≺ 𝑞 ⇐⇒ 𝑝𝑥 < 𝑞𝑥 ∨𝑝𝑥 = 𝑞𝑥 ∧𝑝𝑦 < 𝑞𝑦 . Exactly one of 𝑝 ≺ 𝑞, 𝑝 = 𝑞, 𝑞 ≺ 𝑝 is always true.
𝑝 ⪯ 𝑞 ⇐⇒ ¬(𝑞 ≺ 𝑝). We also denote other common vector operations as follows : addition 𝑝 ±𝑞 ≡ (𝑝𝑥 ±𝑞𝑥 , 𝑝𝑦 ±𝑞𝑦),
scalar product 𝑝 ·𝑞 ≡ 𝑝𝑥𝑞𝑥 +𝑝𝑦𝑞𝑦 , vector product 𝑝×𝑞 = 𝑝𝑥𝑞𝑦−𝑞𝑥𝑝𝑦 (just magnitude). The commonly used orientation
test is performed using cross products : 𝑐𝑐𝑤 (𝑢, 𝑣, 𝑝) tests whether point 𝑝 lies strictly to the left of the line passing
through 𝑢 and 𝑣 , when the observer is facing 𝑣 standing upright at 𝑢. 𝑐𝑐𝑤 (𝑢, 𝑣, 𝑝) ≡ (𝑣 − 𝑢) × (𝑝 − 𝑢) ≥ 0 with equality
if and only if all three points are collinear. Let 𝐶𝐻 (𝑆) denote the convex hull region of a point set 𝑆 .

We define the lower and upper hulls as follows :

𝐿𝐻 (𝑆) ≡ {𝑝 ∈ 𝑆 : (𝑝𝑥 , 𝑦) ∉ 𝐶𝐻 (𝑆)∀𝑦 < 𝑝𝑦)} ∪𝑚𝑎𝑥≺{𝑆}

𝑈𝐻 (𝑆) ≡ {𝑝 ∈ 𝑆 : (𝑝𝑥 , 𝑦) ∉ 𝐶𝐻 (𝑆)∀𝑦 > 𝑝𝑦)} ∪𝑚𝑖𝑛≺{𝑆}

Note that𝐶𝐻 (𝑆) spans the complete area of the hull whearas 𝐿𝐻 (𝑆) and𝑈𝐻 (𝑆) are subsets of vertices in𝐶𝐻 (𝑆) ∩ 𝑆 .
𝐿𝐻 (𝑆) and𝑈𝐻 (𝑆) intersect at exactly two points :𝑚𝑖𝑛≺{𝑆} and𝑚𝑎𝑥≺{𝑆}. They are defined so because they partition
the line segments on the boundary of 𝐶𝐻 (𝑆) into two symmetric chains. If we denote by −𝑇 the point set {−𝑝 : 𝑝 ∈ 𝑇 },
where each point undergoes a centrosymmetric transform (𝑝𝑥 , 𝑝𝑦) → (−𝑝𝑥 ,−𝑝𝑦), then notice that the following
relation holds : −𝑈𝐻 (𝑆) = 𝐿𝐻 (−𝑆). This allows us to treat lower and upper hulls separately, and combine their results
wherever necessary. The rest of the paper focuses on maintaining just the lower hulls under point addition and deletions.

3.1 Online hull

We now consider the task of maintaining 𝐿𝐻 (𝑆) of an incremental set 𝑆 subject to point additions 𝑆 ← 𝑆 ∪ {𝑞}. The
ideas here are mostly taken from [9], with a few improvements. 𝐿𝐻 (𝑆) is stored in memory as an ordered set of 𝑛 − 1
point pairs ((𝑝0, 𝑝1), (𝑝1, 𝑝2)...(𝑝𝑛−2, 𝑝𝑛−1)), where each pair (𝑝𝑖 , 𝑝𝑖+1) corresponds to a line segment 𝑝𝑖𝑝𝑖+1 on 𝐿𝐻 (𝑆).
The points at all times satisfy the inequalities 𝑝0 ≺ 𝑝1 ≺ 𝑝2 ... ≺ 𝑝𝑛−1. Furthermore 𝑝0 =𝑚𝑖𝑛≺{𝑆} and 𝑝𝑛−1 =𝑚𝑎𝑥≺{𝑆}.
We also invariably maintain that no three consecutive points are collinear in the sequence.

For adding a new point 𝑞, we only consider three mutually disjoint cases :
1. 𝑞 ≺ 𝑝0 : In this case, some prefix ((𝑝0, 𝑝1), ..., (𝑝𝑖−1𝑝𝑖 )) is removed, and is replaced by a single element
((𝑞, 𝑝𝑖 )) corresponding to the tangent 𝑞𝑝𝑖 . This removed prefix corresponds to the points that will be in the
interior of the newly formed 𝐿𝐻 (𝑆 ∪ {𝑞}). Note that 𝑝𝑖 will be the first line segment with 𝑐𝑐𝑤 (𝑝𝑖 , 𝑝𝑖+1, 𝑞) in the
sequence. And if no segments in the sequence pass the orientation test, then the entire lower hull is removed.
2. 𝑝𝑛−1 ≺ 𝑞 This case is similar to the first case, only now we delete some suffix.
3. 𝑝0 ⪯ 𝑞 ⪯ 𝑝𝑛−1 → ∃ 𝑗 : 𝑝 𝑗 ⪯ 𝑞 ≺ 𝑝 𝑗+1 Now we check if 𝑞 lies inside 𝐶𝐻 (𝑆) by the orientation test
𝑐𝑐𝑤 (𝑝 𝑗 , 𝑝 𝑗+1, 𝑞). If the point lies outside, note that both 𝑝 𝑗 and 𝑝 𝑗+1 lie in the interior of𝐶𝐻 (𝑆 ∪{𝑞}). So we split
the ordered list into two segments ((𝑝0, 𝑝1), ...(𝑝 𝑗−1, 𝑝 𝑗 )) and ((𝑝 𝑗+1, 𝑝 𝑗+2), ...). We then follow the procedure
in case 1 for the right subsegments and that in case 2 for the left subsegments.

With the process described above, we handle point insertion requests while also discarding points in the new interior.
To get the tangents without adding 𝑞 to 𝑆 , we simply retrieve the indices without adding/deleting any segments. For a
point 𝑞 to lie in the interior, 𝑝0 ⪯ 𝑞 ⪯ 𝑝𝑛−1 must be applicable and the orientation test must pass for both the upper
and lower hulls. Cases 1 and 2 give us one tangent, and case 3 gives us both of them depending on which orientation
test passes. So in cases 1 and 2, the other tangent comes from the same procedure applied to the upper hull.
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4 Sumeet Shirgure

Finding these indices, and splicing the lists quickly are performed using standard available balanced binary search
tree data structures and binary search algorithms on trees. We use treaps (randomized binary search trees) for these
purposes [10] because of their easy implementation and fast performance.

We formulate and solve the problem of finding the farthest point along a direction as follows : Given a set 𝑆 , and a
direction 𝑣 , find the subset of points 𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝐶𝐻 (𝑆 ) {𝑣 · 𝑥} Note that the result is either a single point or a line segment
on the boundary of the hull. We can assume that 𝑣𝑦 < 0 ∨ 𝑣𝑦 = 0 ∧ 𝑣𝑥 > 0. If 𝑣 lies in the other half, we symmetrically
solve the same problem using the upper hull. In our representation ((𝑝0, 𝑝1), ...) of 𝐿𝐻 (𝑆) we find the first segment
(𝑝𝑖 , 𝑝𝑖+1) satisfying 𝑝𝑖+1 · 𝑣 ≤ 𝑝𝑖 · 𝑣 . If the inequality is strict, 𝑝𝑖 is the solution, and if it’s an equality, the line segment
(𝑝𝑖 , 𝑝𝑖+1) is the solution. If no line segment satisfies the condition, then𝑚𝑎𝑥≺{𝑆} is the solution.

3.2 Dynamic hull

We now consider the task of maintaining 𝐿𝐻 (𝑆) of a fully dynamic set 𝑆 under point addition 𝑆 ← 𝑆 ∪ {𝑞} and point
removal requests 𝑆 ← 𝑆 \ {𝑞}. The ideas here are mostly taken from [8], with a few minor improvements.

The big picture is to simulate the standard split and merge approach to compute the lower hull dynamically. We start
with a tree-like structure 𝑇 for maintaining the dynamic set 𝑆 . 𝑇 should have the following characteristics :

1. 𝑇 should be approximately height balanced, so that the height is roughly 𝑂 (𝑙𝑜𝑔( |𝑇 |)).
2. The leaves store the data regarding the individual points of 𝑆 .
3. The internal nodes have exactly two children, and will represent the “merge” step of the split and merge.
4. 𝑇 supports addition and deletion of leaves in 𝑂 (𝑙𝑜𝑔( |𝑇 |)) time.

Such trees arise in Huffman coding [6], [11], and can be easily modified to satisfy all of these criteria. However, we
don’t go that route. Rather, we again implement such a tree using randomization ideas taken from [10] for ease of
implementation and performance. Randomized search trees like these have an additional random “priority” associated
with each tree node, and is used to keep the tree approximately height balanced. They are binary search trees by the
lexicographical ordering of points in 𝑆 , and binary max heaps by priorities. For our purposes, it’s enough to push down
all of the leaves (points of 𝑆) by setting their priorities to −∞. We easily add the constraint that no node with a priority
of −∞ is a parent of another node.

Each leaf contains the information regarding the point in 𝑆 it corresponds to. And each internal node contains the
lower hull of all of the points in the leaves descended from said node. The lower hull is again represented as an ordered
sequence of line segments like in section 3.1.

Whenever we ascend up the tree node𝑇𝑠 , with children𝑇𝑙 and𝑇𝑟 , we compute the convex hull of all leaves descended
from 𝑇𝑠 by merging the convex hull information present in 𝑇𝑙 and 𝑇𝑟 . If the sequence ((𝑙0, 𝑙1), ...(𝑙𝑚−2, 𝑙𝑚−1)) and
((𝑟0, 𝑟1), ...(𝑟𝑛−2, 𝑟𝑛−1)) are the lower hulls in𝑇𝑙 and𝑇𝑟 respectively, then there exists a bridge segment (𝑙𝑖 , 𝑟 𝑗 ) such that
the sequence ((𝑙0, 𝑙1) ...(𝑙𝑖−1, 𝑙𝑖 ), (𝑙𝑖 , 𝑟 𝑗 ), (𝑟 𝑗 , 𝑟 𝑗+1)...(𝑟𝑛−2, 𝑟𝑛−1) is the convex hull of points in 𝑇𝑠 . If one or both of the
children of 𝑇𝑠 is a leaf, we again revert to finding tangents using the case analysis presented in section 3.1. The bridge
is found given the two sequence using a simultaneous binary search as described in [8] in time 𝑂 (𝑙𝑜𝑔(𝑚) + 𝑙𝑜𝑔(𝑛)),
provided the two sequences are represented in memory using binary search trees. Some of the case analysis in finding
the bridge is simplified and the reader is referred to the code for more details. Also note that the residual suffix of the
hull of𝑇𝑙 and the residual prefix of the hull of𝑇𝑟 are not discarded. Instead, the above operations are reversed whenever
we descend down the tree. The residuals are used to reconstruct the hulls of 𝑇𝑙 and 𝑇𝑟 from the hull of 𝑇𝑠 after cutting
the merged sequence along the bridge.
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Robust implementations of real time algorithms for maintaining the convex hull of a dynamic set in the plane 5

Because of the way these internal nodes handle sequences of hulls, at any point in time, either an internal node has
its own consistent view of the hull of the leaves it’s responsible for, or it’s data is irrelevant. Once the computation
reaches the root, the hull sequence at the root is consistent with hull of the entire set 𝑆 . Local operations on nodes of 𝑇
must therefore make the data at said node consistent before proceeding with said operations. E.g rotating a node of 𝑇
(which we don’t do, but mention for possible future reference) must first make the data at that node and its relevant
relatives consistent before proceeding with the rotation.

The tangent and farthest point requests are handled the same way as described before in section 3.1, on the sequence
at the root of 𝑇 once it becomes consistent after point addition and/or deletions.

4 SUMMARY AND FUTUREWORK

We described an implementation of an online and a dynamic convex hull data structure, that maintains the sequence
of convex hulls quickly and answers standard requests like point in polygon, tangent and extreme point queries in
logarithmic time. The online case handles point insertions in𝑂 (𝑙𝑜𝑔(𝑛)) time while the fully dynamic case handles point
insertions and deletions in 𝑂 (𝑙𝑜𝑔(𝑛)2) time.

For future work, it’s possible to try to parallelize parts of the data structures. E.g in the online setting, the part of
code that deallocates the memory required to store parts of the hull that aren’t needed anymore can be delegated to a
separate process. This means that point addition and other requests aren’t blocked by memory deallocation. Another
area of optimization could be the batch processing of point addition queries in the fully dynamic setting. If the point
being added is in the interior, we can save some time on answering the request by not recomputing the tree but rather
"saving it for later" so to speak. This saves time because point addition in the dynamic setting is 𝑂 (𝑙𝑜𝑔(𝑛)2) as of now,
but point in polygon query is only 𝑂 (𝑙𝑜𝑔(𝑛)). It’s possible that the newer works take these ideas into account, but
turning those into code is a challenge.
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