
A flaw in the NeurIPS unlearning challenge and an
algorithmic framework for entropy regularization

The unlearning challenge in a nutshell
We have a dataset split into “retain” and “forget” subsets. And we have a
pre-trained deep neural model trained on “retain+forget” subsets. We also
have a model trained solely on the “retain” subset that is considered the
gold standard.
The objective of the challenge is to come up with an unlearning algorithm
that transforms the pre-trained model into a new model that is “as close to
the gold standard” as possible defined by some metrics.
The key oversight that I’ll be talking about is that there is obviously more
than one way to train the gold standard (“oracle”) model. It’s difficult to say
that a single best method exists. What we’ll show is that there could be a
better way than what’s currently prescribed.

This trend poses a potential security threat, which are exploited by
membership inference attacks [1], [2]. E.g we can train a logistic classifier on
the entropy of the output distribution to discriminate the examples from the
training set vs. outside the training set.

The solution? Employ structural risk minimization. Not on the model’s
weights, but rather on the entropy of the output distribution. This amounts to
adding a -H(P) term to the loss function of the original model.

For example, the middle distribution could be something that’s generated by
a classifier trained with regularization, as opposed to the one on the right.
Also note that if we overdo it, like in the left one, all class specific
information could be lost. This drops accuracy.

Membership inference attacks and entropy
regularization

Results on unlearning challenge starter kit.
We can apply these ideas to the models provided to us in the unlearning
challenge’s starter kit. The results of the experiments are given in the
following table. The original model is a ResNet18 pretrained on CIFAR10
(retain+forget sets), the oracle model is trained solely on the retain subset,
and the obfuscated model is the original model after undergoing
obfuscation. As can be seen in the table, the obfuscated model evades both
kinds of membership inference attacks, one between retain and forget sets,
and one between forget and test(unseen) sets. And it is just as good at
classifying images from the test set. Hopefully this is enough to throw shade
on the choice of the oracle model in the unlearning challenge. E.g in the
unlearning challenge, had the organizers declared that the oracle model will
be trained with regularization the reference distribution would have changed
drastically while still performing at comparable accuracy.

NeurIPS unlearning challenge schematic

References

[1] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models, 2017.

[2] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario
Fritz, and Michael Backes. Ml-leaks: Model and data independent
membership inference attacks and defenses on machine learning models,
2018.

Sumeet Shirgure
University of Southern California

Entropy over the class labels of classifier
To do that, we must first understand certain trends in deep neural network
classifiers – i.e they tend to generate lower amounts of entropy for inputs
from the training set [1], [2]. For example, the following output probability
distributions over three classes have varying levels of entropy. It’s more
likely that the one on the left was not part of the training set and the one on
the right was. Let’s call the two while loops phases (a) and (b). (a) does gradient updates

corresponding to -H(P) while (b) regains any lost accuracy by retraining with
regularization. Note that the accuracy of the classifier can drop arbitrarily in
phase (a), and there’s no guarantee that either phase terminates for any
given ϵ, δ.
But empirical evidence suggests that for reasonable values of these
hyperparameters, phases (a) and (b) should terminate quickly and phase (b)
requires far fewer epochs than training from scratch.

The obfuscation framework
What if we’re given just the pretrained weights of a model that wasn’t trained
with entropy regularization and we want to ‘convert’ it into one that behaves
like it was trained with regularization? The other contribution of this work is
showing that there is a way to do just that, without retraining from scratch.

