
A flaw in the NeurIPS unlearning challenge and an 
algorithmic framework for entropy regularization

The unlearning challenge in a nutshell
We have a dataset split into “retain” and “forget” subsets. And we have a 
pre-trained deep neural model trained on “retain+forget” subsets. We also 
have a model trained solely on the “retain” subset that is considered the 
gold standard.
The objective of the challenge is to come up with an unlearning algorithm 
that transforms the pre-trained model into a new model that is “as close to 
the gold standard” as possible defined by some metrics.
The key oversight that I’ll be talking about is that  there is obviously more 
than one way to train the gold standard (“oracle”) model. It’s difficult to say 
that a single best method exists. What we’ll show is that there could be a 
better way than what’s currently prescribed.

This trend poses a potential security threat, which are exploited by 
membership inference attacks [1], [2]. E.g we can train a logistic classifier on 
the entropy of the output distribution to discriminate the examples from the 
training set vs. outside the training set.

The solution? Employ structural risk minimization. Not on the model’s 
weights, but rather on the entropy of the output distribution. This amounts to 
adding a -H(P) term to the loss function of the original model.

For example, the middle distribution could be something that’s generated by 
a classifier trained with regularization, as opposed to the one on the right.
Also note that  if we overdo it, like in the left one, all class specific 
information could be lost. This drops accuracy.

Membership inference attacks and entropy 
regularization

Results on unlearning challenge starter kit.
We can apply these ideas to the models provided to us in the unlearning 
challenge’s starter kit. The results of the experiments are given in the 
following table. The original model is a ResNet18 pretrained on CIFAR10 
(retain+forget sets), the oracle model is trained solely on the retain subset, 
and the obfuscated model is the original model after undergoing 
obfuscation. As can be seen in the table, the obfuscated model evades both 
kinds of membership inference attacks, one between retain and forget sets, 
and one between forget and test(unseen) sets. And it is just as good at 
classifying images from the test set. Hopefully this is enough to throw shade 
on the choice of the oracle model in the unlearning challenge. E.g in the 
unlearning challenge, had the organizers declared that the oracle model will 
be trained with regularization the reference distribution would have changed 
drastically while still performing at comparable accuracy.
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Entropy over the class labels of classifier
To do that, we must first understand certain trends in deep neural network 
classifiers – i.e they tend to generate lower amounts of entropy for inputs 
from the training set [1], [2]. For example, the following output probability 
distributions over three classes have varying levels of entropy. It’s more 
likely that the one on the left was not part of the training set and the one on 
the right was. Let’s call the two while loops phases (a) and (b). (a) does gradient updates 

corresponding to -H(P) while (b) regains any lost accuracy by retraining with 
regularization. Note that the accuracy of the classifier can drop arbitrarily in 
phase (a), and there’s no guarantee that either phase terminates for any 
given ϵ, δ.
But empirical evidence suggests that for reasonable values of these 
hyperparameters, phases (a) and (b) should terminate quickly and phase (b) 
requires far fewer epochs than training from scratch. 

The obfuscation framework
What if we’re given just the pretrained weights of a model that wasn’t trained 
with entropy regularization and we want to ‘convert’ it into one that behaves 
like it was trained with regularization? The other contribution of this work is 
showing that there is a way to do just that, without retraining from scratch.


