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Objectives

● Understanding the hidden subgroup problem (HSP)
○ Refresher on group theory
○ Statement of the problem and general solution approach for abelian HSPs
○ (Bare bones) introduction to representation theory of finite groups, and the 

corresponding Fourier transformation rules
● Reduction of a couple of well known problems to kinds of HSP

○ Discussion of reductions / current state



Group theory - axiomatic view

● Groups are abstract algebraic structures. A group is defined as a set G 
together with a group operation      that satisfies the axioms :

■ Closure - The result of an operation is again in G 
■ Associativity -
■ Identities -
■ Inverses -
■ If the group operation is commutative, the group is called abelian

●
● Note that it’s not always the case - e.g : the set of real valued n x n matrices under 

the usual matrix multiplication forms a (non-abelian) group.
● The size of the set       is called the order of the group. We will be dealing only 

with finite groups.



Group theory - symmetry groups and subgroups

● Another way to look at groups is to look at the permutations of some n sized 
set X. Consider the set of all bijections 

● It forms what is called the symmetric group of order n under composition.
● Groups let us model and study symmetry preserving operations :

○ E.g the set of all n permutations that leave some cyclic order unchanged forms a subset of  
Note that it’s the same as the set of remainders modulo n under addition - 

● If some subset of the original group again forms a group under the same 
operation, it’s called a subgroup.

● If we also allow reversal of the cyclic order, the resulting group is called the 
Dihedral group of order 2n, denoted       e.g permutations in       map 012 to 
012,120,201, 021,210,102 respectively



Group theory - generators

● Given an arbitrary group G, consider any element g. Collect all powers of g. 
Since the group is finite, we must loop around at some point, implying every 
element g has what’s called its order(g): smallest power r such that 

● The set                                                         is a group generated by g.
○ E.g  2 generates {0,2,4} Z6, 3 generates {0,3} in Z6, 5 generates all of Z6

● Generalize this notion to the subgroup generated by elements
○ The subset of all group elements formed by repeated group operations within the set.
○ Any finite group G has a set of generators with sizemost log(|G|) (idea : repeated doubling)
○ E.g :         is generated by two operations  



● For a group G and its subgroup K, the set                                         is called a 
(left) coset of K in G.

○ Easier to understand with an example :
Then 
are its cosets in G.

● Cosets partition G: the relation 
is an equivalence relation on G, and the corresponding partitions are cosets

○ Hence, the [G : K] * |K| = |G|, or |K| divides |G|.
○ Corollary : order of any element in G divides |G| since <g> forms a subgroup of G

● We say that some function f on G “hides” K, or is “K periodic”, when

The function is constant on cosets and differs between them.

Group theory - cosets and Lagrange’s theorem



The hidden subgroup problem

Let G be a finitely generated group, and X be a finite set, and f : G --> X a function 
that hides a subgroup H of G (given by an oracle using O(log|G|+log|X|) bits as 
input to evaluate f(g)=x), “determine” the subgroup.

● Note - to determine the subgroup, we only need some generators for H. If 
some set A generates all of G, then some subset of A must generate H.

● Even if we have some generators, we also need their orders to do 
something useful.



Solving HSP for abelian groups.

There exists a polynomial time quantum algorithm for solving HSPs over abelian 
groups. We have already seen it as the period finding subroutine in Shor’s 
algorithm, where                 , and the hidden subgroup
Where a is the element whose order we need to find.

To solve for the most general case of arbitrary finite abelian groups, we must first

● Look at the pretty neat characterization of abelian groups
● Look at some ideas from representation theory, as it will also help us in 

the non-abelian case, which don’t have an efficient algorithm



Group homomorphisms and isomorphisms

A structure preserving injection from a group (G,.) to (H,*) is called a 
homomorphism

E.g - 

Another example is the familiar determinant :

If the map is a bijection, the homomorphism is an isomorphism. Group 
isomorphism is the notion we use to say one group is the “same” as another.

Isomorphism carries over naturally to other discrete structures like graphs as well.



Direct product of groups

For groups                        the cartesian product 
forms a group element-wise operation :

This construction is called the external direct product of G and H.



Fundamental theorem of finite abelian groups

Here are some facts about abelian groups:

● All cyclic groups <g> of order n are abelian and are isomorphic to
given by the isomorphism :

●
○           is the same as the set of ordered tuples
○ And also 

● The fundamental theorem states that every abelian group has a factorization 
into cyclic groups of prime powers :

○                                         and                         are the only abelian groups of order 12
○ There exists a generating set where each element has prime-power order



Representation theory (for finite abelian groups)

A representation      of a group G is a group homomorphism from G to the group of 
complex unitary matrices of some size n.

Quite a sophisticated theory. A lot of stuff is simplified for abelian groups.

A fundamental theorem from this domain is that every abelian group G has 1 
dimensional representations, and there are exactly |G| distinct representations.

1D unitary matrices are just complex numbers on the unit circle.

E.g the three representations of        are 



Representation theory (for finite abelian groups)

Each of the |G| distinct representations can be parametrized using the elements in 
the group G itself. We do this by mapping each generator g to an r’th root of 1 :

Let                                                                  be an arbitrary abelian group.

The k-tuples                                                                form a k sized generating set 
for G. Any element                  is a sum of the form                

We define the representation parametrized by h as :



Representation theory (for finite abelian groups)

E.g : For the group                                             , the four representations are :

Some important properties of these representations are :

● Symmetry :
● Orthogonality :

Where e=(0,0,..) is the identity of group G



Representation theory - Fourier transform

Ultimately we want to study functions on groups                        (the oracle kind.)

The set of functions on G                               form a complex vector space 

A convolution of two functions on G is defined as :

The Fourier transform of a function f is defined as the Linear transform :



E.g : For the group                                             , the function f can be written in a 
Fourier basis as follows :

Representation theory - Fourier transform



Fourier inversion formula

The inversion formula reads :

For abelian groups, it simplifies down to:

In quantum algorithms, these transformations are represented as :



● For a generic abelian group G, we must decompose it into its individual prime 
power cycles before sampling s. Note that this is at least as hard as 
factorization of |G|.

○ This is where Shor’s algorithm can be used! Turns out that the prime factorization of |G| 
contains enough information for us to be able to find the order of the generators of the 
subgroup that we are looking for.

● When |G| is not a power of 2, efficient quantum circuits do exist, and a good 
approximation scheme was given by Kitaev in his solution to the Abelian 
stabilizer problem, as a part of phase estimation procedure [6]

● Exact solution can be found in [7]

Solution idea



Fourier transform of periodic functions
Let                  . Say K is generated by

The group                                        is denoted by 

Consider the fourier transform a K periodic function :

The amplitude is



Fourier transform of periodic functions

I.e FT is non-zero only for representations in the factor group G/K



Inverse Fourier transform of periodic functions
I.e FT is non-zero only for representations in the factor group G/K



All of the claimed “breaks” in cryptosystems like RSA/ECC arise from the ease of 
solving abelian HSPs, like factoring, or the discrete logarithm problem.

DLP can cast as an HSP: Given a group       and a generator g, for some x in G, 
find the power r such that                          .

We construct a new group                 and an oracle 

The kernel                                                    forms a subgroup of 
f is periodic in that kernel, which is just the multiples of (r, 1)

Some problems in HSP



There also exist problems which can be cast as HSPs, but the group structure is 
non-abelian, making them difficult to solve. One such example is the Graph 
Isomorphism problem.

● Given two graphs                                      , decide if they are isomorphic
● Interesting problem in its own right -                           as the isomorphism 

                                                                                      is also a certificate.
● It is not known if GI is NP-complete - just like factoring.
● If the map goes from G to itself, the isomorphism is called an automorphism. 

GI can be reduced to finding automorphisms in a single graph.

Graph Isomorphism - a non abelian HSP



● Turns out GI is reducible to Graph automorphism
● The set of all automorphic permutations               form a group under 

composition. And this is a subgroup of the symmetric group of all 
permutations of the vertices 

● Directions :
○ Fourier transforms are well defined over representations of non-abelian groups (matrices)

■ But Fourier basis transform gives us no interesting post measurement collapse
■ It’s shown impossible to solve HSP over Sym(G) using Fourier sampling [4]

○ There exist other “non-Fourier” quantum observables for GI - don’t know if implementable [3]

Graph automorphism - a non abelian HSP



Non abelian HSPs

● Even in the most generic case of a determining a hidden subgroup K of an 
arbitrary group G, there are circuits that prepare a state where all possible 
subgroups hidden by a K periodic f are nearly orthogonal, and we still can’t 
efficiently determine the generators of K. (Problem 5.5 in course textbook)

○ The algorithm mentioned in [5] uses O(|G|) measurements.
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