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Dynamic convex hulls

Given a dynamic set of points in the plane, i.e points are being added and 
removed; maintain the convex hull of these points while answering tangent and 
farthest point queries.

I give exact and robust C++ implementations of the problem in two settings :

● Online : points are just being added and not removed
● Fully dynamic : points are being added and removed



Preliminary data structures

Central is the idea of ordered sequences.

E.g a list sorted in ascending order 
[1, 4, 6, 7, 9]

All we need is a total ordering among the elements to 
define an ordered sequence.

Another idea is that of monotone predicates.

Boolean functions that are false for some prefix and true 
for the rest of the suffix.

(x>5?) : (Blue)[1, 4]     (Red)[6, 7, 9]

(x>6?) : (Yellow)[1,4,6], (Orange)[7, 9]



Preliminary data structures

Represent an ordered sequence in memory 
as a binary search tree.

E.g : the tree on the right represents the 
sequence [1, 3, 4, 6, 7, 8, 10, 13, 14]

Let’s color the split (x>6?)
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Preliminary data structures

Consider the task of splitting the sequence 
into the blue prefix and a red suffix.

Note that if the root is labelled red, so are all 
the children in the right subtree.

If root is colored red, recursively split left 
subtree and attach the resulting red subtree 
as the left child of the root.

Note that we only traverse the depth of the 
tree. O(h)
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Preliminary data structures

For joining two sequences, conveniently 
colored blue and red, we can do the 
following :

Pick one of the two roots randomly.

Make it the new root.

Recursively join the broken subtrees.

Reattach the result as the appropriate child 
of the root.

Turns out if we do it randomly enough the 
tree height is logarithmic.



Preliminary data structures

Therefore we have a data structure that allows us to 
store ordered sequences and split/merge sequences 
based on arbitrary monotone predicates.



Let’s focus on the lower hull

Red lines are the lower hull.

Green lines become red lines when 
rotated 180 degrees.
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Let’s focus on the lower hull

Store the sequence [s1, s2, s3]

[(p0, p1), (p1, p2), (p2, p3)]

The intrinsic total order is the 
lexicographical order of the points :

s1 < s2 ⇔ p0 < p1
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Adding a new point

Consider the task of adding a new point

Assume that q lies to the right.

Color the line segments blue vs. red 
depending on which side q lies.

Note that it forms a monotone predicate

Discard the segment in the interior and 
construct a new segment.

Handle the mirror case symmetrically.
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Adding a new point

What if the query point was somewhere 
in the middle?

Split by lexicographical ordering

There must be a unique segment

(pj, pj+1) that contains q 
lexicographically

Remove that segment and proceed as 
in the earlier case.



Online hull

We’re halfway through!

Adding points and finding tangents are related and are done with similar tricks.



Dynamic divide and conquer.

Consider the task of finding the minimum of a list of integers.

Humor me for a minute and let’s solve this by divide and conquer.

[A0, A2, …, A(n-1)] → [A0,.. Ai], [A(i+1),...A(n-1)] →left, right → min(left, right)



Dynamic divide and conquer.

Consider the task of finding the minimum of a list of integers.

Humor me for a minute and let’s solve this by divide and conquer.

[A0, A2, …, A(n-1)] → [A0,.. Ai], [A(i+1),...A(n-1)] →left, right → min(left, right)

int find_min(int from, int to) {

if(to - from == 1) return a[from];

int mid = (from + to) >> 1;

return min(find_min(from, mid), find_min(mid, to));

} // call find_min(0, n)
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Consider the recursion tree of find_min : it is a balanced binary tree with each 
node containing three things : the indices (from, to) and the return value min

The leaves are individual elements of the array.

Internal nodes are storing the information about the aggregate (minimum) of all the 
leaves descended from them.

The trick is to keep this tree in memory, keep it balanced and perform addition / 
deletion operations on the leaves like a regular binary search tree.

Dynamic divide and conquer.



So to dynamically maintain the minimum of a set S using “divide and conquer 
recursion tree” we need a tree T that has the following properties :

1. Approximately height balanced
2. Leaves store data regarding the individual points of S
3. The internal nodes have exactly two children and represent the “conquer” 

step of the underlying divide and conquer algorithm.
4. Supports addition and deletion of leaves in logarithmic time.

One of the key contributions is the first (to my knowledge) open source C++ 
implementation of exactly such a tree.

Dynamic divide and conquer.



Consider a dynamic set S of points in the 2D plane. The idea is to use the “divide 
and conquer tree” in the following manner :

1. Leaves store individual points in lexicographic order.
2. Internal nodes store the convex hull of all of the leaves reachable from them 

in the representation discussed earlier.
3. The root node hence stores the convex hull of all the points.

Fully dynamic convex hull in the plane.
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The idea is to find the bridge of two 
convex hull sequences quickly.

Crux of the solution – by Overmars 
and van Leeuwen

Once we find the bridge, the 
residual sequences must still be 
preserved and not discarded.

This is because we may need them 
after some points are deleted.

Merging two convex hulls.



Dynamic divide and conquer.

The dynamic divide and conquer trick seems quite powerful. It allows us to convert 
static problems that can be solved with divide and conquer into dynamic problems 
with some overhead.

These class of problems are dubbed decomposable by Bentley and Saxe.

https://www.sciencedirect.com/science/article/pii/0196677480900152

https://www.sciencedirect.com/science/article/pii/0196677480900152
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Dynamic divide and conquer.

Consider finding the pair of points in the plane that are closest to each other.

There exists a standard O(n log(n)) time divide and conquer algorithm.

What happens if we apply dynamic divide and conquer trick to this problem?

We get a data structure that allows us to dynamically maintain the closest pair of 
points under point addition and deletion in logarithmic time.
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Planar greedy matching

Consider a set of points on a 2D lattice. We wish to find a minimum weight 
matching of these points under some norm.

A greedy approximation is to find a closest pair, match them and keep repeating 
until we don’t have any points left.

Trivial approaches are super-linear.

We can use the dynamic closest pairs data structure to do the following :

Construct the data structure, find a closest pair, delete the two points from the set 
in logarithmic time, repeat. Total complexity is still O(n log n).



Planar greedy matching - WIP

Consider a set of points on a 2D lattice. We wish to find a minimum weight 
matching of these points under some norm.

A greedy approximation is to find a closest pair, match them and keep repeating 
until we don’t have any points left.

I’m thinking of applying similar ideas to problems that arise in decoding topological 
surface codes in fault tolerant quantum computation.

Check out updates on my blog! - https://sumeetshirgure.github.io

https://sumeetshirgure.github.io


Thank you for your attention!


