
Dynamic point set problems
in the plane

Sumeet Shirgure

Dynamic convex hulls

Given a dynamic set of points in the plane, i.e points are being added and
removed; maintain the convex hull of these points while answering tangent and
farthest point queries.

I give exact and robust C++ implementations of the problem in two settings :

● Online : points are just being added and not removed
● Fully dynamic : points are being added and removed

Preliminary data structures

Central is the idea of ordered sequences.

E.g a list sorted in ascending order
[1, 4, 6, 7, 9]

All we need is a total ordering among the elements to
define an ordered sequence.

Another idea is that of monotone predicates.

Boolean functions that are false for some prefix and true
for the rest of the suffix.

(x>5?) : (Blue)[1, 4] (Red)[6, 7, 9]

(x>6?) : (Yellow)[1,4,6], (Orange)[7, 9]

Preliminary data structures

Represent an ordered sequence in memory
as a binary search tree.

E.g : the tree on the right represents the
sequence [1, 3, 4, 6, 7, 8, 10, 13, 14]

Let’s color the split (x>6?)

Preliminary data structures

Consider the task of splitting the sequence
into the blue prefix and a red suffix.

Preliminary data structures

Consider the task of splitting the sequence
into the blue prefix and a red suffix.

Note that if the root is labelled red, so are all
the children in the right subtree.

Preliminary data structures

Consider the task of splitting the sequence
into the blue prefix and a red suffix.

Note that if the root is labelled red, so are all
the children in the right subtree.

If root is colored red, recursively split left
subtree and attach the resulting red subtree
as the left child of the root.

Preliminary data structures

Consider the task of splitting the sequence
into the blue prefix and a red suffix.

Note that if the root is labelled red, so are all
the children in the right subtree.

If root is colored red, recursively split left
subtree and attach the resulting red subtree
as the left child of the root.

Note that we only traverse the depth of the
tree. O(h)

Preliminary data structures

For joining two sequences, conveniently
colored blue and red, we can do the
following :

Preliminary data structures

For joining two sequences, conveniently
colored blue and red, we can do the
following :

Pick one of the two roots randomly.

Make it the new root.

Preliminary data structures

For joining two sequences, conveniently
colored blue and red, we can do the
following :

Pick one of the two roots randomly.

Make it the new root.

Recursively join the broken subtrees.

Preliminary data structures

For joining two sequences, conveniently
colored blue and red, we can do the
following :

Pick one of the two roots randomly.

Make it the new root.

Recursively join the broken subtrees.

Reattach the result as the appropriate
child of the root.

Preliminary data structures

For joining two sequences, conveniently
colored blue and red, we can do the
following :

Pick one of the two roots randomly.

Make it the new root.

Recursively join the broken subtrees.

Reattach the result as the appropriate child
of the root.

Turns out if we do it randomly enough the
tree height is logarithmic.

Preliminary data structures

Therefore we have a data structure that allows us to
store ordered sequences and split/merge sequences
based on arbitrary monotone predicates.

Let’s focus on the lower hull

Red lines are the lower hull.

Green lines become red lines when
rotated 180 degrees.

Let’s focus on the lower hull

Store the sequence [s1, s2, s3]

[(p0, p1), (p1, p2), (p2, p3)]

Let’s focus on the lower hull

Store the sequence [s1, s2, s3]

[(p0, p1), (p1, p2), (p2, p3)]

The intrinsic total order is the
lexicographical order of the points :

s1 < s2 ⇔ p0 < p1

Adding a new point

Consider the task of adding a new point

Assume that q lies to the right.

Adding a new point

Consider the task of adding a new point

Assume that q lies to the right.

Color the line segments blue vs. red
depending on which side q lies.

Adding a new point

Consider the task of adding a new point

Assume that q lies to the right.

Color the line segments blue vs. red
depending on which side q lies.

Note that it forms a monotone predicate

Discard the segment in the interior and
construct a new segment.

Adding a new point

Consider the task of adding a new point

Assume that q lies to the right.

Color the line segments blue vs. red
depending on which side q lies.

Note that it forms a monotone predicate

Discard the segment in the interior and
construct a new segment.

Handle the mirror case symmetrically.

Adding a new point

What if the query point was somewhere
in the middle?

Split by lexicographical ordering

Adding a new point

What if the query point was somewhere
in the middle?

Split by lexicographical ordering

Adding a new point

What if the query point was somewhere
in the middle?

Split by lexicographical ordering

There must be a unique segment

(pj, pj+1) that contains q
lexicographically

Adding a new point

What if the query point was somewhere
in the middle?

Split by lexicographical ordering

There must be a unique segment

(pj, pj+1) that contains q
lexicographically

Adding a new point

What if the query point was somewhere
in the middle?

Split by lexicographical ordering

There must be a unique segment

(pj, pj+1) that contains q
lexicographically

Remove that segment and proceed as
in the earlier case.

Online hull

We’re halfway through!

Adding points and finding tangents are related and are done with similar tricks.

Dynamic divide and conquer.

Consider the task of finding the minimum of a list of integers.

Humor me for a minute and let’s solve this by divide and conquer.

[A0, A2, …, A(n-1)] → [A0,.. Ai], [A(i+1),...A(n-1)] →left, right → min(left, right)

Dynamic divide and conquer.

Consider the task of finding the minimum of a list of integers.

Humor me for a minute and let’s solve this by divide and conquer.

[A0, A2, …, A(n-1)] → [A0,.. Ai], [A(i+1),...A(n-1)] →left, right → min(left, right)

int find_min(int from, int to) {

if(to - from == 1) return a[from];

int mid = (from + to) >> 1;

return min(find_min(from, mid), find_min(mid, to));

} // call find_min(0, n)

Dynamic divide and conquer.

Consider the recursion tree of find_min : it is a balanced binary tree with each
node containing three things : the indices (from, to) and the return value min

Consider the recursion tree of find_min : it is a balanced binary tree with each
node containing three things : the indices (from, to) and the return value min

The leaves are individual elements of the array.

Dynamic divide and conquer.

Consider the recursion tree of find_min : it is a balanced binary tree with each
node containing three things : the indices (from, to) and the return value min

The leaves are individual elements of the array.

Internal nodes are storing the information about the aggregate (minimum) of all the
leaves descended from them.

Dynamic divide and conquer.

Consider the recursion tree of find_min : it is a balanced binary tree with each
node containing three things : the indices (from, to) and the return value min

The leaves are individual elements of the array.

Internal nodes are storing the information about the aggregate (minimum) of all the
leaves descended from them.

The trick is to keep this tree in memory, keep it balanced and perform addition /
deletion operations on the leaves like a regular binary search tree.

Dynamic divide and conquer.

So to dynamically maintain the minimum of a set S using “divide and conquer
recursion tree” we need a tree T that has the following properties :

1. Approximately height balanced
2. Leaves store data regarding the individual points of S
3. The internal nodes have exactly two children and represent the “conquer”

step of the underlying divide and conquer algorithm.
4. Supports addition and deletion of leaves in logarithmic time.

One of the key contributions is the first (to my knowledge) open source C++
implementation of exactly such a tree.

Dynamic divide and conquer.

Consider a dynamic set S of points in the 2D plane. The idea is to use the “divide
and conquer tree” in the following manner :

1. Leaves store individual points in lexicographic order.
2. Internal nodes store the convex hull of all of the leaves reachable from them

in the representation discussed earlier.
3. The root node hence stores the convex hull of all the points.

Fully dynamic convex hull in the plane.

The idea is to find the bridge of two
convex hull sequences quickly.

Merging two convex hulls.

The idea is to find the bridge of two
convex hull sequences quickly.

Crux of the solution – by Overmars
and van Leeuwen

Merging two convex hulls.

The idea is to find the bridge of two
convex hull sequences quickly.

Crux of the solution – by Overmars
and van Leeuwen

Once we find the bridge, the
residual sequences must still be
preserved and not discarded.

This is because we may need them
after some points are deleted.

Merging two convex hulls.

Dynamic divide and conquer.

The dynamic divide and conquer trick seems quite powerful. It allows us to convert
static problems that can be solved with divide and conquer into dynamic problems
with some overhead.

These class of problems are dubbed decomposable by Bentley and Saxe.

https://www.sciencedirect.com/science/article/pii/0196677480900152

https://www.sciencedirect.com/science/article/pii/0196677480900152

Dynamic divide and conquer.

Consider finding the pair of points in the plane that are closest to each other.

There exists a standard O(n log(n)) time divide and conquer algorithm.

Dynamic divide and conquer.

Consider finding the pair of points in the plane that are closest to each other.

There exists a standard O(n log(n)) time divide and conquer algorithm.

What happens if we apply dynamic divide and conquer trick to this problem?

Dynamic divide and conquer.

Consider finding the pair of points in the plane that are closest to each other.

There exists a standard O(n log(n)) time divide and conquer algorithm.

What happens if we apply dynamic divide and conquer trick to this problem?

We get a data structure that allows us to dynamically maintain the closest pair of
points under point addition and deletion in logarithmic time.

Planar greedy matching

Consider a set of points on a 2D lattice. We wish to find a minimum weight
matching of these points under some norm.

Planar greedy matching

Consider a set of points on a 2D lattice. We wish to find a minimum weight
matching of these points under some norm.

A greedy approximation is to find a closest pair, match them and keep repeating
until we don’t have any points left.

Planar greedy matching

Consider a set of points on a 2D lattice. We wish to find a minimum weight
matching of these points under some norm.

A greedy approximation is to find a closest pair, match them and keep repeating
until we don’t have any points left.

Trivial approaches are super-linear.

Planar greedy matching

Consider a set of points on a 2D lattice. We wish to find a minimum weight
matching of these points under some norm.

A greedy approximation is to find a closest pair, match them and keep repeating
until we don’t have any points left.

Trivial approaches are super-linear.

We can use the dynamic closest pairs data structure to do the following :

Construct the data structure, find a closest pair, delete the two points from the set
in logarithmic time, repeat. Total complexity is still O(n log n).

Planar greedy matching - WIP

Consider a set of points on a 2D lattice. We wish to find a minimum weight
matching of these points under some norm.

A greedy approximation is to find a closest pair, match them and keep repeating
until we don’t have any points left.

I’m thinking of applying similar ideas to problems that arise in decoding topological
surface codes in fault tolerant quantum computation.

Check out updates on my blog! - https://sumeetshirgure.github.io

https://sumeetshirgure.github.io

Thank you for your attention!

