

Solving the subset sum problem on a quantum computer

Sumeet Shirgure

Motivation

- Implementing two of the most popular and potentially useful algorithms on a quantum computer – the quantum Fourier transform and Grover's algorithm.
- Evaluating the performance of a general purpose NISQ computer on an NP hard problem in combinatorial optimization.

The subset sum problem

Input : given a list of positive integers $[x_1, x_2, ..., x_n]$ and a target sum t

Output : a subset (n-bit string $\ s_1s_2...s_n$) with where one is promised to exist

Let
$$
\sum_i x_i < 2^k \text{ for some } k
$$

In other words, find a bit string s with $f(s) = 1$

$$
f(s) = \begin{cases} 1, \sum_i s_i x_i = t \\ 0, otherwise \end{cases}
$$

The subset sum problem - classical methods

Known to be NP-complete.

The best known classical algorithms for this problem are superpolynomial in either n or k .

The (promise) subset sum problem - quantum algorithm

We'll discuss a quantum algorithm that runs in $O(nk\sqrt{2^n})$ time while only needing $O(n+k)$ qubits.

Fourier states

Here is the bloch sphere representation of the Z-basis encoding of 4-bit integers

Fourier states

Here is the bloch sphere representation of the F-basis encoding of 4-bit integers

Fourier states

Addition in Z-basis is equivalent to rotation in F-basis.

$$
|1\rangle \left(\frac{|0\rangle + e^{2\pi i \phi}|1\rangle}{\sqrt{2}}\right) \rightarrow |1\rangle \left(\frac{|0\rangle + e^{2\pi i (\phi + \theta)}|1\rangle}{\sqrt{2}}\right)
$$

$$
P(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi i \theta} \end{pmatrix}
$$

Adder circuit

Idea: Use these controlled rotations to implement addition.

Adder circuit

Idea: Use these controlled rotations to implement addition.

USC

Subset sum oracle

We can check if the subset sum equals the target in Z basis using a multi-controlled NOT gate :

Subset sum oracle

Combining all of the above, we have this circuit.

We also need to uncompute the blue register.

Subset sum oracle

The oracle to recognize a valid string can be modified to flip the global phase instead of a bit.

Now we can apply Grover's algorithm.

Executing a small instance on a trapped ion QC

 $x = [5, 7, 8, 9, 1]$, $target = 16$ feasible strings : 01101, 01010 $n = 5, k = 5$

After running 3 Grover iterations.

USC

Executing a small instance on a trapped ion QC

Mode is a solution!

Pretty impressive for a circuit without error correction.

Difficult to determine why the second feasible set has low relative frequency.

Erasure errors?

TISC

Choices

- Fourier basis addition to reduce the number of gates. Multi-controlled not gates are costly, while controlled phase gates are much more efficient.
- IonQ's trapped ion system allows two qubit gates between all pairs. We did need that.

Conclusion

Implemented a customized algorithm for solving an NP complete combinatorial optimization problem on a quantum computer.

Would love to try something similar with primitive error correction techniques, but the hardware necessary to do so is not available in the near future.

<https://github.com/sumeetshirgure/qchack2022-microsoft-challenge>

Thanks for listening!

