
qSyn 3.0 update
Sumeet Shirgure

Introduction and overview

qSyn is the logic synthesis tool designed as a part of the qPALACE suite
● Consists of two tools – qYosys, and qABC
● qYosys performs RTL logic synthesis given a high level design.
● qABC maps RTL to the given SFQ technology.

New features in qABC

● Improved path balancing algorithm.
● Generalized sequential synthesis method.
● Improved and simplified software implementation of all modules.

Full path balancing

All RSFQ gates are synchronous. To get the correct behaviour, input SFQ
pulses must arrive within a specific time interval.

We enforce this by making all paths from all inputs have the same number of
gates using SFQ destructive readout DFFs.

Full path balancing - example

Full path balancing - example

Full path balancing - idea

The earlier version of qABC inserted (level_difference - 1) many DFFs between
every node and its fan-in.

This sum of level differences is the same heuristic value that is minimized by
dynamic programming.

Full path balancing - idea

Consider the case where an SFQ signal is duplicated and fed to multiple gates
situated at different levels ahead of it.

Full path balancing - idea

Can be improved like so.

Full path balancing - algorithm

The algorithm “looks like” this :

Full path balancing - metric

If the number of DFFs inserted by this algorithm is ‘N’, and the sum of level
differences is ‘SLD’ : clearly N ≤ SLD

Measuring improvement :
(SLD-N)/SLD, – “DFF gain”
(SLD-N)/(total # of gates before this optimization), – “Total gain”

Full path balancing - benchmark results

Benchmark DFF gain (%) Total gain (%)

EPFL adder 12.52 12.01

EPFL multiplier 22.72 19.57

EPFL sqrt 67.18 66.97

EPFL decoder 40.08 9.35

ISCAS85 c499 13.77 6.65

ISCAS85 c880 21.68 14.14

ISCAS85 c2670 49.91 38.93

ISCAS89 s420 9.00 4.29

ISCAS89 s526 28.7 14.35

ISCAS89 s298 39.8 22.68

Full path balancing - benchmark results

Benchmark DFF gain (%) Total gain (%)

Average Max Average Max

EPFL arithmetic 43.32 68.21 29.31 68.09

EPFL random_control 31.02 68.27 20.16 64.86

ISCAS85 21.53 49.91 14.39 38.93

ISCAS89 20.57 39.82 11.51 22.68

Full path balancing - impact

Reducing gate count also potentially impacts place/route performance, and any
simulation performed by the later tools on the synthesized / routed netlist.

N ≤ SLD

While SLD is an easy to calculate heuristic, attempting to minimize N is better
than attempting to minimize the upper bound.

Perhaps try to minimize N directly before path balancing by modifying the
dynamic program?

Logic synthesis - possible idea

● Level assignment is now generalized to handle any sequential circuit.
● Data initiation interval cuts the data processing rate.
● This interval is itself determined by the depth of the combinational part.

Sequential logic in RSFQ.

Sequential RSFQ - example

Sequential RSFQ - example

Sequential RSFQ - path balancing

Sequential RSFQ - counterexample

Sequential RSFQ - counterexample

Sequential RSFQ - weak cycles

z(t+1) <= (f(x(t)), h(y(t)))
y(t+1) <= g(x(t))

Sequential RSFQ - weak cycles

Balancing these two
paths is incorrect!

z(t+1) <= (f(x(t)), h(y(t)))
y(t+1) <= g(x(t))

z(t+1) <= (f(x(t)), h(g(x(t))))

But should be
(f(x(t)), h(g(x(t-1))))

Critical path length determines data initiation interval.
E.g 4 cycles for the 2 bit counter.
This effectively cuts the data processing rate by 4.

This effect gets more serious when the combinational parts grow deeper, e.g a
circuit with just 30 levels of combinational depth can make a 30 GHz chip
effectively process data at 1GHz.

The fundamental challenge in making sequential with higher frequency is
reducing this critical path length.

Sequential RSFQ - drawbacks

Sequential RSFQ - FSMs

One way to understand sequential circuits
is through finite state machines.

Sequential RSFQ - FSMs

It might be possible to bypass RTL
mapping (qYosys) and synthesize
sequential behaviour by directly using
FSM descriptions.

Sequential RSFQ - FSMs

It might be possible to bypass RTL
mapping (qYosys) and synthesize
sequential behaviour by directly using
FSM descriptions.

But it is unlikely that we will obtain
better initiation intervals without an
exponential blow up in state space.

