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1 Introduction

In this paper, we will study the framework of the hidden subgroup problem,
while also looking at some generalizations that are relevant to cryptography.
A good reason to study it is to understand something that unifies some of the
fastest algorithms for problems solved by quantum computers alone. The field
of cryptography experienced a tremendous change when Shor introduced al-
gorithms [20] for integer factorization and discrete logarithms in BQP. If a
quantum computer with enough qubits could operate without failure due to
noise or decoherence, it could be used to break public-key cryptosystems such
as the RSA scheme, and Diffie-Hellman key exchanges that rely on the hardness
of the discrete logarithm problem over finite fields. Both of these problems are
special cases of the (abelian) hidden subgroup problem. While search problems
like the ones solved by Grover’s algorithm may have no structure, the expo-
nential speedups achieved by quantum computers are known to be instances of
promise problems like the HSP, where some structure in the input is promised.

There is another motivation to study HSPs (especially non-abelian ones).
In cryptography the computational hardness of some problem is assumed /
believed, and sometimes proved. It is essential to prove the equivalence of a
cryptosystem and a known hard mathematical problem. Such proofs are called
”security reductions”. Often the hardness is not proved completely, and only
reduced to some widely believed conjecture such as P ̸= NP or the existence
of a one-way function (which incidentally implies the former.) For this reason
it is natural to ask which HSPs are hard, and why. Any hardness results or
lower bounds on such problems might give us a better picture of the complexity
classes they reside in. Moreover they raise our confidence of the security of
cryptosystems that could be based on them.

Outline Section 2 introduces the hidden subgroup problem. Section 3 gives
some ideas on solving abelian HSPs in general. Specific instances of abelian
HSPs relevant to cryptography are also discussed. Section 4 discusses some
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non-abelian HSPs, some results on hardness and also introduces lattice based
cryptosystems. Finally we conclude with some discussions in section 5. Required
concepts, theorems and proofs are presented in the appendix.

2 The hidden subgroup problem

Given a group G, a subroup H < G, and a set X, we say a function f : G→ X
hides the subgroup H, if f is constant on cosets of H, while it is different
between different cosets of H. Such a function f is also called H-periodic. The
hidden subgroup problem is a promise problem where we are given a function
f that hides some H < G. f is available to us through an oracle that uses
O(log|G| + log|X|) bits. Using only the information gained from evaluations
of f , we must determine a generating set of H. Note that a small (O(log|G|)
sized) generating set always exists. And since each element of G can be labeled
using log|G| bits, the output complexity is polynomial.

If the group G is abelian, there exists a BQP algorithm to solve the corre-
sponding HSP. On the other hand, the existence of effecient quantum algorithms
for HSPs of certain non-abelian groups would solve problems like graph isomor-
phism and some shortest vector problems on lattices in probabilistic polynomial
time on a quantum computer.

3 Solving abelian HSPs

Here we will focus on finite abelian groups. Since any finite abelian group G is
isomorphic to a direct sum of prime-power order cyclic groups, and each element
is in a conjugacy class of its own - complex-valued functions f over G have a
simple form of Fourier transform. And, more importantly, that transform can
be implemented effeciently on a quantum computer.

The fundamental reason why quantum computers gain exponential speedup
over classical computers on abelian HSPs seems to be this characterization of
abelian groups, and the effeciency of Fourier transforms of functions on them.
That, coupled with the fact that Fourier transforms have a desirable shift-
invariance property, allows us to compute the hidden subgroups effeciently.

The standard (also called the ”Fourier sampling” [3]) method of solving
abelian HSPs starts by creating a uniform superposition state. (All normaliza-
tion factors are omitted):

|ψ⟩ =
∑
g∈G

|g⟩ ⊕ |0⟩ (1)

Next we evaluate the function reversibly via the oracle and store the result
in the second register.

|ψ⟩ =
∑
g∈G

|g⟩ ⊕ |f(g)⟩ (2)

The above operation entangles the two registers. We now measure the second
register, which disentangles it from the first and puts it in a uniform superpo-
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sition of one of f ’s level sets. E.g if we measure the value f(cH), it puts the
system in a superposition of all elements in a random coset |cH⟩

|ψ⟩ =
∑
h∈H

|ch⟩ ⊕ |f(ch)⟩ = |cH⟩ ⊕ |f(cH)⟩ (3)

where c is some coset representative. For an abelian group (or in general, for a
normal subgroup H ◁ G,) cH is a member of the factor group G/H.

Finally we perform an inverse Fourier transform on the resulting state of
the first register and then measure in computational basis. For abelian groups,
this gives us a member of the factor group G/H. Repeated experiments give us
random generators of G/H, thus giving us H in polynomial time.

For exact details refer to [14]. Of course, implementing Fourier transforms
over arbitrary groups is interesting in itself. The first algorithm approximating
QFT over arbitrary cyclic groups was given by Kitaev [11].

The order finding subroutine of Shor’s algorithm can be cast as a hidden
subgroup problem of the group Z∗

p for some p = Θ(n), where n is the number
we need to factor, and the hidden subgroup is the one generated multiplicatively
by a random a ∈ Zn of the algorithm.

Discrete logarithms for finite groups can also be cast as an HSP. The DLP is
defined as follows - given a group Z∗

p and a generator g, for some element x = gr,
determine its order r. The HSP is then constructed by letting Zp × Zp be the
base group, and the (computable) homomorphism f : Zp × Zp → G; f(a, b) =
gax−b acts as the hiding oracle. By the homomorphism theorem, f ’s kernel
kerf = {(a, b) : f(a, b) = 1} forms a normal subgroup of Zp × Zp. f hides that
kernel, which is generated by (r, 1).

A similar treatment of some specific elliptic curve groups results in an effe-
cient solution to their elliptic curve discrete logarithm problem (ECDLP) [18].
The hardness of which is relied upon by corresponding elliptic curve cryptogra-
phy schemes.

4 Non abelian HSPs

For non-abelian groups, since the group law need not commute, the left cosets
gH = {gh : h ∈ H} are not necessarily the same as the right cosets Hg =
{hg : h ∈ H} for some subgroup H < G. This difference seems to be the key
in solubility by Fourier transforms, as the subgroups for which this is the case -
i.e normal subgroups, can be effeciently computed even for non-abelian groups
[8]. There exists a way to generalize Fourier transforms to non-abelian groups
as well, but is not as simple. (See [8] and [9].)

However, the general case of the non-abelian HSP doesn’t yield to this pro-
cess. The difficulty doesn’t appear to lie in the inability to perform a Fourier
transform, but rather in the interpretation of the resulting state. Specifically,
starting from m = Θ(log|G|) random coset states |g1H⟩, ..., |gmH⟩ (like the one
in equation 3), there exists a quantum observable that gives enough information
to determine all possible subgroups H hidden by f . However, it is not known
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how to effeciently implement such an observable. The algorithm given in [5] uses
only m oracle queries, but needs O(|G|) measurements. Note that the algorithm
mentioned doesn’t even need to be able to perform a QFT over G.

There exist interesting and important problems reducible to finding non-
abelian hidden subgroups. One of them being the graph isomorphism (GI)
problem, defined as follows : given two connected graphs (with same number
of vertices in each), decide if they’re isomorphic. This problem has many im-
portant applications in a lot of areas ranging from chemistry to electronics to
computer science. In many ways, GI is similar to factoring - both, having suc-
cint certificates, are in NP. Neither is known to be NP-hard, nor to be in
P, and are categorized as NPI (NP-intermediate), under the assumption that
P ̸= NP [13]. However, factoring is in BQP, while GI isn’t known to be. GI
can be reduced to a non-abelian HSP, as finding the subgroup of a permutation
group on the vertices of a graph. [16], [15] and [7] give a negative result about
the effecient solutions of the general HSP over the symmetric group, and also
the special cases relevant to solving GI, by Fourier sampling methods like the
one described in section 3. They do this by giving an information theoretic lower
bound on the number of coset states needed to determine a hidden subgroup.

Even though GI hardness is not the best candidate for making cryptosys-
tems, it does makes a fun little appearance in an example of a zero knowledge
proof in [4]. (See [6] for zero knowledge proofs.) To that end, some prime
candidates for post-quantum cryptography happen to be lattice - based cryp-
tosystems. A lattice L ⊂ Rn is the set of all linear integer combinations of
some basis vectors b1,b2, ...,bn ∈ Rn. For lattices with non-unique basis sets,
optimization problems like the shortest vector problem (SVP) or its approxi-
mations are considered hard ([1], [2]) even for quantum computers. SVP asks
the shortest vector in L (i.e the one closest to the origin) given a basis set.
The first connection between lattice problems and quantum computation was
given in [17], by reducing a promise problem - the f(n)-unique SVP, with the
promise that the shortest vector is shorter by a factor of at least f(n) from all
other non-parallel vectors in the lattice; to a hidden subgroup problem over the
dihedral group Dn. Even though Dn is much simpler than the symmetric group
Sn, there is no known effecient algorithm to solve the corresponding HSP. As
noted in the paper, the best algorithm known is quasipolynomial in n [12].

5 Conclusion

In summary, the Fourier sampling method seems to be a powerful tool, at least
in theory, to solve problems reducible to the abelian hidden subgroup problem.
The promise of the oracle function having the subgroup hiding property is also
key in obtaining a significant speedup over classical algorithms. However, that
power also seems to diminish when the underlying object under consideration
becomes more and more unstructured. Naturally, the lesser the amount of prior
knowledge we have, the greater is the time we will need to solve the problem at
hand. So it shouldn’t come as a surprise that we don’t know how to solve for
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the general non-abelian case as effeciently as we would like to.
On the other end, this difficulty in determining non-normal hidden sub-

groups is good news for cryptographers. The discussed attempt of trying to
break lattice-based cryptosystems relies on introducing a promise problem, and
even the weakened version of the problem is not effeciently solvable by quan-
tum computers. Moreover, the impossibility results discussed in section 4 only
increase our confidence in the post-quantum security of lattice based cryptosys-
tems. Any attempt at solving non-abelian HSPs must necessarily involve some
means other than Fourier sampling. This raises the question, do such methods
exist? Perhaps the most exciting use of information theory would be to pro-
vide bounds on the computational power of machines. One great example is
[7]. What other ways could information theory be used to bound computational
effeciency in solving certain problems?

For potential NPI problems like GI, there still hasn’t been any progress
towards solving it faster than classical computers. The impossibility results
mentioned earlier are also applicable to solving GI. An interesting direction in
this area would be to consider special cases of graphs as the promise problems,
and research if quantum computers provide any advantage. GI is already classi-
cally solved effeciently for a number of special graphs (e.g graphs with bounded
parameters like treewidth or genus.) Is there some class of graphs where quan-
tum algorithms outperform classical ones for deciding the corresponding graph
isomorphism? Any progress in this direction will shed more light on the class
NPI. Because from the state of things, there is good evidence that BQP
separates problems within it. Hardness results for GI, or even other problems
suspected to be in NPI, only strengthen this belief.
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Appendices

A Group theory

A good introduction to abstract algebra and group theory is [10].
A group (G, ◦) is a set G and a binary operation ◦ : G×G→ G on G with

the following properties :

• closure : ∀a, b ∈ G, a ◦ b ∈ G

• associativity : ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c)

• identity : there exists a unique e ∈ G : ∀a, a ◦ e = e ◦ a = e

• inverses : ∀a∃a−1 : a ◦ a−1 = a−1 ◦ a = e

We usually omit the ◦ and write a ◦ b as ab. We also omit the group operation,
and refer to the group by the its ground set G, when it’s understood. The size
of the set G is called the order of the group, also denoted |G|.

If the group operation commutes, i.e ∀a, b ∈ G, ab = ba, G is called an
abelian group. A subgroup H of G is a subset of G which forms a group under
the same operation. This is denoted by H < G.

For a finite group G, if we pick any element g ∈ G, the set ⟨g⟩ = {gk : k ∈ N}
must be finite. The smallest r ∈ N such that gr = e is called the order of
g. r = |⟨g⟩|; ⟨g⟩ = {e, g, g2, ..., gr−1} is called the group generated by g. In
general, a group G is said to be generated by elements, called ”generators”
g1, g2, ..., gm if every element g ∈ G can be expressed as a product of (possibly
repeated) generators. For every group G, there exists a set of m = O(log(|G|))
sized generators. A cyclic group is one that can be generated by a single (not
necessarily unique) generator. An important example of cyclic groups are Zn =
{0, 1, ..., n− 1} under addition modulo n.

For H < G, the left coset of H in G with the coset representative g is
defined to be the set gH := {gh : h ∈ H}. Analgously, the right coset is defined
Hg := {hg : h ∈ G}. Any element in gH can act as its coset representative. For
additive groups like Zn, it’s conventional to write cosets as g +H, g ∈ Zn. An
alternative construction of cosets is from the equivalence classes of the relation
on G given by (a, b) ⇐⇒ ab−1 ∈ H; i.e a, b ∈ gH ⇐⇒ ab−1 ∈ H. And since
the map h → gh is a bijection from H → gH, |H| = |gH|. And since the
equivalence classes partition G, there are exactly |G|/|H| cosets of H in G.
This implies |H| divides |G|, and the order of every element also divides |G|.
(Known as Lagrange’s theorem.) E.g, the cosets of {0, 4, 8} = H < G = Z12 are
H, 1 +H = {1, 5, 9}, 2 +H and 3 +H.
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For g1, g2 ∈ G, the conjugate of g2 w.r.t g1 is the element g−1
1 g2g1. The

conjugacy relation also forms equivalence classes in G - define the conjugacy
class Gx of x ∈ G as Gx := {g−1xg : g ∈ G}.

For N < G, N is a normal subgroup, denoted N ◁ G, if ∀g : g−1Ng = N .
Equivalently, ∀g ∈ G : gN = Ng; i.e the left and right cosets coincide. If N ◁G,
the cosets of N form a group called the factor group, denoted G/N , given by
(aN)(bN) = (ab)N . E.g, consider the dihedral group Dn, generated by two
elements r and f , satisfying the relations rn = e, f2 = e, frf = r−1. The group
of rotations Rn = ⟨r⟩ is a normal subgroup Rn ◁ Dn. For abelian groups, all
subgroups are normal, and each conjugacy class has only one element.

B Morphisms and matrix groups

For any two groups (G, ◦G) and (H, ◦H), their cartesian product K := G×H =
{(g, h) : g ∈ G, h ∈ H} forms a group under the operation ◦K : K × K → K
given by (g1, h1)◦K (g2, h2) = (g1◦G g2, h1◦H h2). K is called the external direct
product, or the direct sum of G and H.

The most effective way of studying relations between two groups is by maps
that preserve structure (morphisms). Formally, a group homomorphism is a
function ϕ : G → H such that ∀a, b ∈ G, ϕ(a ◦G b) = ϕ(a) ◦H ϕ(b). When the
domain of symbols is understood, we omit ◦, and write ϕ(ab) = ϕ(a)ϕ(b). Ho-
momorphisms preserve identities and inverses : ϕ(eG) = eH , ϕ(a−1) = ϕ(a)−1.

If the group homomorphism is a bijection (i.e a one-one and onto map), it’s
called an isomorphism. If an isomorphism ϕ : G → H exists, G is said to be
isomorphic to H, denoted G ∼= H. Group isomorphism is the notion used to
distinguish groups, as isomorphic groups differ only in labels, and are the same
for all practical purposes. An important idea is that all cyclic groups of order n
are isomorphic to Zn. Furthermore, if a group has prime order p, by Lagrange’s
theorem, it must be Zp. We can also show that Zmn

∼= Zm × Zn.
A fundamental theorem for abelian groups states that any such group G

is isomorphic to a direct sum of cyclic groups with prime power order. I.e :
G ∼= Zp1

× Zp2
× ...Zpk

where pis are (not necessarily distinct) prime powers.
E.g Z2 × Z2 × Z3 and Z4 × Z3 are the only two abelian groups of order 12.

A homomorphism from an object onto itself is called an endomorphism.
Analgously, an isomorphism from an object to itself is an automorphism. The
most familiar examples of morphisms in linear algebra are matrix groups : an
endomorphism on an n dimensional vector space V is a linear transform L :
V → V . The set of all such endomorphisms is denoted End(V ). Note that
End(V ) forms a monoid (group without inverses) under functional composition;
and under a choice of basis, End(V ) is the set of all n by n matrices with
elements from the field of V (usually R or C). Similarly, Aut(V ) is the group
of all automorphisms on an n dimensional vector space V under functional
composition. (Since bijections guarantee inverses.) Under a choice of basis,
Aut(V ) is isomorphic to the set of all n by n invertible matrices. This group
is called the general linear group, denoted GL(V ). For complex valued vector
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spaces with fixed basis, the matrix group is denoted GLn(C)
Isomorphisms and automorphisms can be defined intuitively for other objects

like graphs as well - two graphs G and H are isomorphic if there is a bijection
(graph isomorphism) ϕ : V [G] → V [H] such that (u, v) ∈ E[G] ⇔ (ϕ(u), ϕ(v)) ∈
E[H]. The group of all automorphisms of a graph G is denoted Aut(G). It
naturally forms a subgroup of all bijections on G, called the symmetric group,
denoted Sym(G).

The kernel of a group homomorphism ϕ : G → H is defined as the set
mapped to identity : ker ϕ := {g ∈ G : ϕ(g) = eH}. One of the fundamental
theorems of group homomorphisms is that ker ϕ ◁ G.

C Representation theory

Representation theory aims to study abstract algebraic structures by represent-
ing their elements as linear transformations of vector spaces. A good introduc-
tion to the topic is [19]. Representation theory is also deeply related to quantum
mechanics itself [21].

The following discussion borrows content and notation from section 2 of [8].
A fundamental theorem from representation theory for finite groups is that

every group G has exactly r inequivalent irreducible representations, where r is
the number of conjugacy classes of G. For abelian groups, all irreducible repre-
sentations are 1 dimensional, and there exist exactly |G| such representations.

For finite abelian groups G ∼= Πn
j=1Zpj , these representations take a simple

form, where each group element x ∈ G corresponds to a tuple (x1, x2, ..., xn),
and the representation parametrized by h ∈ G can be defined as ρh(x) =

exp
{
2πi

∑n
j=1

xjhj

pj

}
It is instructive to note that the Fourier transform of a subgroup hiding

function f : G→ C over an abelian group has the following property:

f̂(ρh) =
1√
|G|

∑
s∈G

ρh(s)f(s) (4)

f̂(ρh) =
1√
|G|

∑
s1∈Zp1

...
∑

sn∈Zpn

ρh(s)f(s1, s2, ..., sn) (5)

Without losing generality, let’s assume the subgroup H hidden by f is gen-
erated by s1, s2, ..., sk; k ≤ n. This means that f is independent of si∀i ≤ k.

f̂(ρh) =
1√
|G|

∑
sk+1∈Zpk+1

...
∑

sn∈Zpn

f(sk+1, ..., sn)
∑

s1∈Zp1

...
∑

sk∈Zpk

ρh(s) (6)

The ”coefficient” of f(s) for some s ∈ G in the above equation is hence

1√
|G|

∑
s1∈Zp1

...
∑

sk∈Zpk

ρh(s) (7)
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=
e2πiθ√
|G|

∑
s1∈Zp1

...
∑

sk∈Zpk

exp

2πi

k∑
j=1

sjhj
pj

 (8)

where θ =
∑n

j=k+1
sjhj

pj
.

... =
e2πiθ√
|G|

∑
s1∈Zp1

...
∑

sk∈Zpk

k∏
j=1

exp

{
2πi

sjhj
pj

}
(9)

=
e2πiθ√
|G|

k∏
j=1

∑
sj∈Zpj

exp

{
2πi

sjhj
pj

}
(10)

=
e2πiθ√
|G|

k∏
j=1

(pjδhj0) (11)

= ρh(s)|H|δh∈G/H/
√
|G| (12)

⇒ f̂(ρh) =
1√
|G|

∑
s∈G

|H|δh∈G/Hρh(s)f(s) (13)

The inverse transform now becomes :

⇒ f(s) =
1√
|G|

∑
h∈G/H

f̂(ρh)ρh(s
−1) (14)

(i.e sums over just the elements in the factor group.)
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