
A gentle introduction to quantum algorithms
for combinatorial and optimization problems

by Sumeet Shirgure

USC, May 2022

Abstract

This article documents and discusses existing methods and some recent developments
in the field of quantum computing in solving combinatorial and optimization prob-
lems. This is by no means an exhaustive survey and is only supposed to get computer
scientists with little experience in quantum computing get excited about the subfield.

1 Introduction

In recent years there has been considerable progress in quantum computing theory and
technology. An interesting sub-field of applications of quantum algorithms is in solving
optimization problems faster than classically possible. However, since the information
processed by such algorithms is quantum in nature, we must also be aware of their utility
and limitations.

This paper attempts to discuss these topics at a high level without going too deep into
the technical details, and is supposed to be accessible to anyone without a background in
quantum computing.

Section 2 gives a bare minimum introduction to quantum mechanics and quantum
computation, and only requires a working knowledge of complex valued linear algebra. [7]
is a great reference in that regard. Section 3 introduces some standard tools in quantum
computing. And the later sections each discuss a relevent topic in adequate detail. A
few topics that serve to tie some loose ends are deferred to the appendices. A reader
uninterested in quantum computing might still find the contents of section 6 of considerable
interest, because the majority of that discussion is in the classical domain.

2 A crash course in quantum computing

A short introduction to quantum computing is in [35]. Here we review some basic concepts
at the bare minimum, which are discussed in any text, such as [30], on the subject. We
will start by reviewing three basic postulates of quantum mechanics � (a) state description,
(b) state collapse and measurement statistics, and (c) evolution.

2.1 Postulates

Quantum information is processed and stored in quantum computers in the form of quantum
bits or qubits. The state of any quantum mechanical system is postulated to be a vector
 belonging to a complex Hilbert space H that is normalized w.r.t that inner product
h:; :i. Qubits are quantum systems for which this Hilbert space is the 2D complex vector
space C2.

1

As a mathematical abstraction, every qubit state is given by a normalized 2D complex
vector

�
�
�

�
= �

�
1
0

�
+ �

�
0
1

�
= �j0i+ � j1i; j�j2+ j� j2= 1. j0i and j1i (see section 2.3

for notation) being a basis of C2 are also called the computational basis states. When
parametrizing the qubit state by ei
(cos(�)j0i+ ei'sin(�)j1i), we can ignore
, called the
global phase, as we will see it has no observable effects.

Physical quantities of interest like position, momenta, energy, spin are are represented
by observables, which are linear operators acting on H. An important example is the
energy operator Ĥ - the Hamiltonian. A fundamental idea in quantum mechanics is that
the eigenvalues of any observable correspond to physically observed quantities. Since these
should be real even for complex vector states, the observables are always Hermitian, i.e
they must have real eigenvalues : Ĥ y= Ĥ . This possibility of a discrete nature of energy
eigenvalues is at the heart of quantum mechanics.

The eigenvectors corresponding to an operator are called its eigenstates. If a quantum
system j i is in a linear combination of eigenstates

P
j�j j ji, it's said to be in a quantum

superposition of those states. When the associated physical quantity observed, such a state
is postulated to collapse to the respective eigenstate j ji. The probability of observing
m is given by the Born rule : j�mj2/

P
j j�j j

2. That is, the probabilities are proportional
to the magnitudes of the corresponding amplitudes �j. This is why the global phases are
unobservable. The state j ji after the collapse is again normalized.

E.g the qubit state �0j0i+�1j1i when measured in the computational basis is put in
the state jj i after measurement with probability j�j j2, and we observe the event labeled
j in the form of some physical phenomenon.

Lastly, the continuous time evolution of a closed quantum system is described by the
Schro�dinger equation i~ d

dt
j (t)i= Ĥ j (t)i, Ĥ being the energy operator.

The is a linear differential equation and is solved by j (t)i= e¡iĤt/~j (0)i, where the
exponentiation is the usual function of the operator Ĥ . The Hamiltonian shouldn't change
with time because closed systems have conserved energy.

U(t)= e¡iĤt/~ is a unitary operator, as it should be to keep normalized �

U(t)y=
P

k>0
1

k!

��
¡i Ĥt
~

�
k
�y
=

P
k>0

1

k!

�
i Ĥt

~

�
k
= eiĤt/~=U(t)¡1

The exponential of a skew-Hermitian operator is always unitary. As we will see, quantum
logic gates must also be unitary. This is a key necessary condition to prevent loss of
information, which is essential when we consider thermally isolated closed systems � a
consequence of what is known as Landauer's principle [27].

2.2 The quantum gate model

The standard model of quantum computation is described in terms of a series of quantum
logic gates applied on a set of qubits. These can be thought of as quantum analogs of
classical logic gates like NAND, XOR etc. Each gate acts on a small subset of qubits. Let's
start by understanding how to express composite states with multiple qubits.

2.2.1 Composite states

The main idea is to take products of the corresponding Hilbert spaces. The composite state
is then the tensor product (also called the Kronecker product) of the two states.

2 Section 2

E.g if two qubits are in states
�
�
�

�
=�j0i+ � j1i and

�
�
�

�
= �j0i+� j1i, the composite

system is in the state
�
�
�

�

�
�
�

�
=

0BBBBBB@
��
��
��
��

1CCCCCCA
=(�j0i+ � j1i)
 (�j0i+ � j1i)=��j0i
 j0i+�� j0i
 j1i+ ��j1i
 j0i+ �� j1i
 j1i
jji
 jki is abbreviated as jjki. Sequences of qubits in computational basis can be

represented as bitstrings inside a ket ji. The above state is written in the j00i; j01i; j10i;
j11i basis of the product Hilbert space C22. Hence, n qubits have C2n dimensional states.
This apparent complexity is not entirely observable, however. Still quantum computers
can process information by moving around in such large spaces.

Yet another crucial phenomonon is that of entangled states. There exist states like
j00i+ j11i

2
p that can't be expressed as the tensor product of two states. Such entangled states

are physically realizable, and imply that measuring one qubit will immediately tell us about
the state of the other when it is measured. Even if this state itself is not a product of two
single-qubit states, it does lie in the product Hilbert space of the two qubits, which is what
the postulate requires.

Measuring just the first qubit of
P

pq�pq jpqi results in an observation corresponding

to the j0i state, the final state is
P
q�0qj0 qiP
q j�0q j2

. The probability of this happening is
P

q j�0qj
2.

2.2.2 Qubit gates
State evolution must be unitary to keep normalized. The states of qubits are manipulated
using quantum gates that are unitary operators acting on corresponding Hilbert spaces.
E.g, the NOT gate X =

�
0 1
1 0

�
maps �j0i+ � j1i to � j0i+ �j1i, effectively acting as a

negation. Any 2� 2 unitary matrix U acts on a qubit in state j i to give U j i.
Multiple single-qubit gates Ui; Uj acting on j'i; j i is equivalent to Ui
 Uj acting

on j'i
 j i : Ui
 Uj(j'i
 j i) = (Uij'i)
 (Uj j i). More generally, a single unitary

operation U can act on multiple qubits. E.g, the controlled-NOT, or CNOT=

0BBBBBB@
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CCCCCCA
mapping jpi
 jqi!jpi
 jq� pi where � is bitwise exclusive or. Note how it's convenient
to just talk of the action of quantum gates on basis states, because linearity uniquely
extends the definition to superposition states.

The set of all single qubit unitaries along with CNOT is a universal gate set. And even
if the number of unitary transformations is uncountably infinite, there always exist modest-
sized finite gate sequences that approximate any desired operation up to an acceptable
error in the operator norm � this result is given by the Solovay-Kitaev theorem [18].

Quantum gates are a generalization of classical gates. However, classical gates like
AND and OR destroy information irreversibly. Their quantum analogs can be implemented
using reversible gates like the Toffoli gate CCX jxi
jyi
jzi !jxi
jyi
jz � (x ^ y)i.
Bennet [8] showed that any classical computation can be made reversible like this, with an
acceptable overhead in the number of qubits and gates.

Some standard qubit gates are the Pauli gates X, Y =
�
0 ¡i
i 0

�
; Z =

�
1 0
0 ¡1

�
, the

Hadamard gate H = 1

2
p
�
1 1
1 ¡1

�
, phase shift gates P (') =

1 0

0 e2�i'

!
. A common oper-

ation is to put a set of n qubits each in the uniform superposition (j0i+ j1i)/ 2
p

=H j0i.
The composite state

�
j0i+ j1i

2
p

�
n
= 2¡n/2

P
x2Z2n

jxi is a uniform sum of all bit strings.

This can, for example, represent the search space of all 2n subsets in a search problem.

A crash course in quantum computing 3

jxi U cjxiU

jci

Ufjyi

jxi

jy� f(x)i

jxi
n

(a) A controlled unitary (b) A reversible unitary computing f

Figure 1. Circuit diagrams of common operations

Like the CNOT gate, we may condition any unitary on the state of an external qubit,
depicted diagramatically as in figure 1(a). jci
 jxi¡!jci
U cjxi; U is applied only when
the control qubit is j1i. The equivalent unitary is (j0ih0j
 I + j1ih1j
 U) (see section
2.3). Controlled unitaries can hence be extended to arbitrary circuits being conditioned
on another qubit. Physical implementation of controlled unitaries is an issue we won't be
concerned with.

Any n bit quantum circuit f can be implemented as a unitary operation Uf (figure
1(b)) acting on n+1 qubits that acts as Uf jxi
 jyi¡! jxi
 jy� f(x)i. Applying Uf to
jxi
 j0i gives us jxi
 jf(x)i. Uf may require additional j0i qubits as temporary memory,
but we can always return that temporary memory to its original state by uncomputing the
intermediate garbage, thanks to reversibility of quantum gates.

Consider the effect of Uf on 2¡n/2
P

x2Z2n
jxi� j0i¡! 2¡n/2

P
x2Z2n

jxi� jf(x)i. The
physical apparatus implementing Uf must somehow simultaneously evaluate f at every
point. And yet, we cannot access more than one function output without measuring the
resulting state more than once. Even still, such quantum parallelism is useful for designing
quantum algorithms.

2.2.3 Measurement

Measurement of a qubit collapses its state into a j0i or a j1i, which we then observe as
a classical bit. Since measurement is non-unitary, it can be used to affect non-unitary
transformations that we might need. E.g consider the state j i= j00i+ j01i+ j10i

3
p . We cannot

prepare this just by using unitary gates on two qubits initialized to j0i. We can however
add an ancillary qubit, and use it to store the AND of the first two :
j000i! [H
2
I]! 1

2
(j00i+ j01i+ j10i+ j11i)
j0i! [CCX]! j000i+ j010i+ j100i+ j111i

2
Now, we just measure the 3rd qubit, and keep repeating the experiment until we

observe it collapse to j0i; which would then imply that the first two qubits are in state
j i. The required observation occurs with probability 3/4, so we need 4/3 repetitions of
the experiment in expectation. We can hence use partial measurement also as a technique
to create quantum states via non-unitary transformations.

2.3 The bra-ket notation
Lastly, since Dirac's bra-ket notation is quite convenient, we'll discuss a bit more about it
here. jxi (pronounced ket) is used to denote a vector in space V . hxj (bra) is the complex
conjugate transpose of jxi, and is a dual vector in the dual space V *. The standard inner
product of two complex vectors hx; yi=(jxi)yjyi=

P
ixi� yi is denoted as hxjyi. (xi� denoting

complex conjugates.) As usual, hx; yi= hy; xi. The x inside jxi can be anything as per
our convenience.

4 Section 2

Bra-ket notations are useful to describe operators as sums of outer products. E.g
a unitary U mapping an orthonormal basis e to another e0 as U jeji ! ei'j jej0 i, must
be of the form

P
j e
i'j jej0 ihej j. Indeed U jeki= (

P
j e
i'j jej0 ihej j)jeki=

P
j e
i'j jej0 ihej jeki=P

j �kje
i'j jej0 i= ei'kjek0 i, where hekjeji= �kj is 1 iff k= j and is 0 otherwise.

As another example, if an observable H has eigenvalues hi and eigenstates juii, the
spectral theorem states H =

P
i hijuiihuij. Note that juiihuij is a projection on the ith

eigenvector of H .
The expected eigenvalue of an observable H =

P
ihijuiihuij exhibited by a state j i isP

i hijhuij ij
2=

P
i hih juiihuij i= h j(

P
i hijuiihuij) j i= h jH j i, where huij i are

the projections of along the eigenstates of H , and the l2-norm-squares are probabilities
by the Born rule.

3 Some standard quantum algorithms

Here we discuss some standard quantum algorithms. These are useful techniques for solving
combinatorial problems in themselves, and can also be used to design more sophisticated
ones. This is by no means a complete collection.

3.1 Amplitude amplification
Discovered by Grover [24], and independently by Brassard et. al [14] amplitude amplifi-
cation referst to a broad set of techniques to manipulate superpositions into states having
higher amplitudes associated with eigenstates we prefer. As an example we'll look at
Grover's algorithm.

Suppose we are given a unitary oracle Uf for a boolean formula f :Z2n!Z2 (section
2.2.2), and we wish to identify some n-bit strings x satisfying f(x)=1. Uf acts as Uf jxi

jyi! jxi
 jy� f(x)i. We can convert such an oracle to another Uw as follows :

jxi
 j0i¡! [I
X]¡!jxi
 j1i¡! [I
H]¡!jxi

�
j0i ¡ j1i

2
p

�
¡! [Uf]¡!

¡!jxi

�
jf (x)i ¡ j1� f (x)i

2
p

�
= (¡1)f(x)jxi

�
j0i ¡ j1i

2
p

�
¡! [I
 (X¡1 H¡1)] ¡!

(¡1)f(x)jxi
 j0i.

Grover's algorithm � geometric view

So Uw
 I � (I
 (X ¡1H¡1))Uf(I
 (HX)) acts as an oracle that �recognizes� strings
x with f(x) = 1 by negating the phase : (Uw
 I)jxij0i ! (¡1)f(x)jxij0i. Assuming for
simplicity that f(x) is 1 for a single string w. Grover's algorithm starts from a uni-
form superposition jsi=2¡n/2

P
x2Z2n

jxi and starts increasing the amplitude of jwi while
reducing that of others.

Some standard quantum algorithms 5

Rewriting jsi = 2¡n/2jwi + 2n¡ 1

2n

q
js 0i where the rest of the terms js 0i =

1

2n¡ 1

q P
x:f(x)=/ 1

jxi.

From its definition, Uw=
P

x:f(x)=/ 1
jxihxj ¡ jwihw j= I ¡ 2jwihw j. Geometrically, Uw

is a reflection about the hyperplane with jwi as its normal direction, which contains the
js0i direction. The algorithm proceeds by making such successive reflections about jsi and
js0i, while never leaving the js0i; jwi plane. The operator Us depicted below is the Grover

diffusion operator =2jsihsj¡ I. cos(�/2)= hs0jsi= 2n¡ 1
2n

q
. Each pair of reflections cause

the state to rotate towards jwi by an angle �, which brings the optimal number of iterations
to about �(2n

p
). This gives us a quadratic speedup over exhaustive search. Measuring

the resulting state in computational basis produces a feasible string with high probability.

3.2 Phase estimation
Phase estimation is a technique to estimate the eigenvalue e2�i' of a unitary operator U
given its eigenstate jxi and store the result as '2 [0; 1) accurate up to n qubits.

An effecient implementation of phase estimation exists, provided we can construct
oracles for U2j (2j applications of U) effeciently, and can condition those oracles on external
qubits. It also employs the quantum Fourier transform. We won't go into the details, and
will only look at the procedure as a black box.

Given U and an eigenvector jxi, i.e jxi can be prepared effeciently, or is available to us,
where U jxi= e2�i'jxi, QPE is itself a quantum circuit P that takes n additional qubits,
and acts on j0in
 jxi to give j'~in
 jxi; '~ being an approximation 2n' to n-bits.

Chapter 5 of [30] is a good resource on the quantum Fourier transform and quantum
phase estimation. QPE applied on specific unitaries U directly result in the famous poly-
nomial time algorithms for factoring and the discrete logarithm problem.

3.3 Hamiltonian simulation
The earliest motivations of building a quantum computer were the realization that a such a
device could effeciently simulate quantummechanics much faster than a classical computer.
Chapter 4.7 of [30] is an excellent introduction to the topic. Hamiltonian simulation is a
fundamental part of simulating physical systems.

The general idea is to simulate Schro�dinger evolution by approximating the operator
e¡iĤt via quantum gates. This is hard in general, since Ĥ could be exponentially large.

Usually, simulation is studied for specific classes of Hamiltonians. E.g when Ĥ is a
sum of less complex, more locally acting Hamiltonians

P
k Ĥk. The heart of simulation

algorithms for such sums is the Trotter product formula :

limn!1 (eiA�t/neiB�t/n)= ei(A+B)�t

which is verified by expanding the Taylor series. This is valid even when A and B don't
commute. Note that in general for two matrices A and B unless AB=BA, eA+B need not
=eAeB. We can also derive error bounds like so : ei(A+B)�t= eiA�teiB�t+O(�t2) which
give us approximation errors made by our simulation.

If the unitary transforms e¡iĤk
�t can be effeciently implemented as gates, we get an

approximation for e¡iĤ�t. Hamiltonians of the kind H =H1
H2: : :
Hk, also sometimes
have effecient gate implementations.

6 Section 3

[10] gives an algorithm to effeciently simulate sparse Hamiltonians � ones whose matrix
have at most s non-zero elements per row/column. Usually algorithms taking sparse
matrices as input assume an oracle that takes (r, i) indices and returns ith non-zero
element of the row r. [15] discusses discrete and continuous time quantum random walks
on graphs, and the correspondance of the two cases leads to an algorithm for effeciently
simulating certain Hamiltonians. Quantum random walks are interesting in their own
right, and are further discussed in appendix B.

4 Adiabatic quantum computation

4.1 The quantum adiabatic algorithm
The term adiabatic itself has roots in thermodynamics; it refers to processes that don't
transfer heat. Classically, such reversible processes are also called isentropic � entropy
preserving.

The quantum adiabatic algorithm was first presented by Farhi, Goldstone, Gutmann
and Sipser in [20]. QAA works with time-dependent Hamiltonians Ĥ(t). The analysis of
time resource requirements for the algorithm relies on the quantum adiabatic theorem. In
it's original form it states � a physical system remains in its instantaneous eigenstate if
a given perturbation is acting on it slowly enough, and if there is a gap between the given
eigenvalue and the rest of the energy spectrum.

The system evolves as given by the Schro�dinger equation i~ d
dt
j (t)i= Ĥ(t)j (t)i. For

some smooth family of Hamiltonians fĤ(t): 06 t6 T g, denote the instantaneous eigen-
states/eigenvalues as Ĥ(t)jl; ti=El(t)jl; ti, where El(t) is the lth energy level at time t :
E0(t)6E1(t)6 � � �6EN¡1(t). According to the adiabatic theorem, a system in the ground
state at time 0 j (0)i= j0; 0i stays in the ground state provided T is suffeciently large (i.e
the process is suffeciently slow.) More concretely, limT!1 hl=0; t=T j (T) i=1.

As noted in [20], for gmin�min06t6T fE1(t)¡E0(t)g (the smallest spectral gap), T >
�(1/gmin

2) suffices. Intuitively, the smaller the spectral gap, the more likely it is to acci-
dentally transition from the ground state. The trick then is to construct Hamiltonians HB
and HP on n-qubit systems that have desired ground eigenstates. HB has a ground state
that is easily found and prepared, and the ground state of HP encodes the solution to a
problem of interest, and Ĥ(t)=HB(1¡ t/T)+ tHP /T .

[20] proceeds to show how we can encode binary constraint satisfaction problems as
Hamiltonians, and how the above Schro�dinger evolution gives a final state j (T)i maxi-
mizing the number of satisfied clauses. The problem with using adiabatic computation to
solve NP problems is that one usually finds the spectral gap gmin to be exponentially small
in problem size N , making T 2
(exp(�N �)). So, while it's unlikely that QAA might solve
NP problems exponentially faster than classical algorithms, the constants � and � might
be smaller than classically possible.

4.2 The Ising model, and quadratic binary optimization
A particular kind of physical system whose Hamiltonian is of interest, is the one described
by the Ising model. It was originally conceived to study magnetism arising out of inter-
acting spins in nearby atoms in a metallic lattice. The configuration of such systems is
given by a graph G(V ; E) of spin sites V and adjacent interacting pairs of sites E. The
(classical) Hamiltonian for this graphical model takes the formH(�)=¡

P
(i;j)2EJij�i�j¡

�
P

i2Vhi�i, � 2f+1;¡1g
jV j. Clearly, for �=0, the cut fi: �i=+1g for �2 argmin�H(�)

is a solution to a weighted max-cut instance. A quantum version of such a Hamiltonian,
encoding this and other NP-hard problems, is given in [29].

Adiabatic quantum computation 7

The class of quadratic unconstrained binary optimizations (QUBO) that seek to find
argminx2Z2nfxTQxg, for symmetric n�nmatrices Q2Sn also falls under this paradigm, as
they are computationally equivalent to the Ising model. Solving this class of problems by
quantum annealing is one of the main intended uses of some adiabatic quantum computers.
(One such computer is right here at USC.) Although, quantum annealing might not be
exactly the same as implementing the adiabatic algorithm as mentioned above, the two
are closely related. It's important to note is that this model of computation is equivalent
[3] to the standard gate model discussed earlier.

4.3 A variational approximation algorithm

While QAA aims to solve problems exactly, there do exist families of quantum circuits that
can approximate a solution. Farhi, Goldstone and Gutmann [19] present an approximation
scheme (QAOA) that takes a parameter p, and constructs a circuit with depth scaling
linearly with p, that gives increasingly good approximations for max-SAT instances. QAOA
is an example of a variational algorithm. It applies a specific unitary transform U(�;
)
parametrized by �;
 2Rp to generate a state U(�;
)j 0i!j (�;
)i. The goal is to find
optimal parameters (�?;
?) using classical optimizers such that j (�?;
?)i encodes the
approximate optimal solution.

U(�;
) has a specific form : U(�;
) =
Q
j2[p] e

¡i�jHBe¡i
jHP . The Hamiltonians HB
and HP have the same ground states as they do in QAA, and are also called the mixing
and problem Hamiltonians respectively. The convergence guarantee when p!1 follows
from the fact that larger circuits more closely approximate the adiabatic evolution.

The algorithm proceeds by initializing the parameters (�;
) and repeatedly updating
them. This update is done by preparing j (�;
)i using the above unitaries (which are
assumed to have effecient gate implementations) and calculating the expectation h (�;

)jHP j (�;
)i. Then a classical optimizer is used to find a new set of parameters (
 0; � 0)
for the next step. The choice of optimizer varies between exact applications. Note that the
optimizer doesn't have access to �;
 gradients, and must use some gradient-free methods.

This paradigm of hybrid quantum-classical computation using variational algorithms
has gained a lot of attraction recently, especially since the advent of the variational quantum
eigensolver (VQE) [31] for estimating the smallest (ground-state) eigenvalue, which has
applications in chemistry and physics. One of the advantages of such methods is their
applicability on already available, noisy, intermediate scale quantum computers that have
limited coherence times and fault tolerance.

5 The HHL algorithm for solving linear systems

Harrow, Hassidim and Lloyd [25] exhibit a quantum algorithm, denoted as the HHL algo-
rithm, to solveN62n dimensional linear systems of the form Ax=b. We will briefly discuss
the overview of the algorithm and then go over some its applications and limitations.
One of the broad ideas in quantum algorithms involving matrices is to consider them as
Hamiltonians, and build circuits resembling them. HHL is an example of this.

8 Section 5

5.1 The algorithm
The HHL algorithm encodes vectors b and x by normalizing and mapping them to quantum
states jbi and jxi. This is done by creating the state jbi=

P
i2Z2n

bijii, i.e the compo-
nents are stored as amplitudes. If A is not Hermitian, the algorithm works on solving

0 A

Ay 0

!
y=

�
b
0

�
to obtain y=

�
0
x

�
, hence A is assumed Hermitian w.l.o.g. A then has

a decomposition A=
P

j�j jujihuj j with �j as eigenvalues for eigenvectors juji. Rewriting
jbi in that eigenbasis as jbi=

P
j�j juji, we have jxi=A

¡1jbi=
P

j�j
¡1�j juji, which is the

state HHL computes.
To do so, HHL works with the unitary U = eiAt=

P
j e
i�jtjujihuj j, and uses techniques

of Hamiltonian simulation from [10], [15] to implement eiAt. Using quantum phase esti-
mation (section 3.2) with U , it prepares the state

P
j �j j�j~ ijuji. (Approximately. Since

the eigenvalues are not always exact, an in-depth analysis takes care of inaccurate phase
estimation and its effect on the final state, which is expressed as a double sum in the paper.)
Here �j~ is an n¡bit binary approximation of �j/2�. If �js are large, we can always scale
the entire system.

Next, on an auxiliary qubit, a rotation conditional on j�j~ i is applied, which results in
the stateP

j �j j�j~ ijujij0i ¡!
P

j �j j�j~ ijuji

(
1¡ C2

�j~
2

r
j0i + C

�j~
j1i

)
. Then the auxiliary qubit

is measured until it's observed to collapse to j1i, causing the resulting state to be
1

Z

P
jC�j�j

~¡1j�j~ ijujij1i, where the normalization factor Z =
P

k j�k
2jjC2j/j�~k2 j

q
is esti-

mated by the probability of observing j1i. This is the desired state up to a normalization
C /Z.

The running time of the algorithm is lower bounded by the success probability of
observing j1i, which in turn depends on jC j 2O(1/�). And the phase estimation error
translates to a final error �. A rudimentary analysis shows that the running time is
O~(log(N)s2�3/ �) for s-sparse matrices. An extra factor of � can be saved by ampli-
tude amplification (section 3.1).

5.2 Applications and limitations
The conception of the HHL algorithm sparked a �mini-revolution� in the field of quantum
machine learning. Suddenly there was renewed interest in solving practical problems like
least squares fitting, classification and clustering using this exponentially faster algorithm.
Similar algorithms with related ideas started popping up. This included solving linear
differential equations [9], and various tasks in machine learning [28] and data fitting [34].

As aptly put in [1], HHL is not exactly an algorithm for solving linear equations Ax= b
in logarithmic time. Rather, it's an algorithm for approximately preparing a quantum
superposition jxi. The paper also goes on to discuss its limitations, in that HHL guarantees
an exponential speedup only when (1) the state jbi can be loaded quickly in the quantum
computer's memory, (2) the unitary e¡iAt is effeciently implemented as a quantum circuit,
and A is sparse (3) A is well-conditioned , i.e its condition number �= j�maxj/ j�minj is
small; note that classical algorithms like the conjugate gradient method also prefer well-
conditioned matrices. (As �min! 0, the balls are mapped to ellipsoids that become more
and more oblong, until they are flat in some direction.) (4) Simply writing x requires linear
time, however HHL produces jxi in logarithmically many qubits. The algorithm is useful if
we can utilize jxi and may not be when we definitely need x. [1] further shows that despite
these limitations, there exist potential applications of HHL.

The HHL algorithm for solving linear systems 9

[4] improves on HHL by giving an algorithm that generalizes amplitude amplification, and
uses it to give an improved algorithm for solving linear systems in O~(� log3� log(N)poly(1/
�)).

[17] improves on HHL by giving an algorithm with runtime O(log(1/�)). However, as
noted in the paper, if the output jxi is needed to sample expectations of the kind hxjM jxi,
the sampling error alone rules out a poly(log(1/�)) time algorithm. Still, this is useful
when used as a subroutine being called polynomially many times.

6 Semidefinite programming
A semidefinite program (SDP) is a special case of a convex program, with numerous
applications in a variety of topics ranging from operations research to combinatorial opti-
mization. SDPs also generalize linear programs. They are an indespensible tool when it
comes to the development of approximation algorithms for NP-hard optimization problems,
the most famous of which has to be the SDP relaxation of the max cut problem [23] by
Goemans and Williamson.

The popular classical algorithms for solving SDPs are mostly based on numerical primal-
dual methods like the interior point method [11], which work by applying Newton-Raphson
iterations on a pair of (primal, dual) vectors to minimize a barrier function. These methods
are bottlenecked by the need to store and invert a large block matrix of Hessians and
Jacobians. There also exist other first order methods.

For our purposes, however, we'll start with a seemingly unrelated framework of the
multiplicative weights (MW) algorithm. This meta-algorithm has been rediscovered mul-
tiple times in different fields ranging from machine learning to game theory to constrained
optimization. Arora, Kale and Hazan [5] give a great survey on this framework, and our
discussion will be based on it. This will eventually lead us to a primal-dual method for
solving SDPs [6]. Lastly, we'll gently scratch the surface of a quantum algorithm presented
in [13] which is based on these ideas.

6.1 The multiplicative weights algorithm
As introduced in [5], MW is a generalization of the weighted majority algorithm which
solves the prediction from expert advice problem. In this problem, we have n experts, each
giving a binary bit of advice; will it or won't it rain today, for example; on every time step
for predicting a global observation. The weighted majority algorithm starts by giving an
equal weight to every expert. Everyday, it makes decisions based on the weighted sum of
the experts' advice, and then penalizes all of the experts that gave the wrong advice that
day, by halving their weight. We can prove that the number of mistakes it makes is bounded
above by twice the number of mistakes made by the best expert, plus additive factors.

In the general randomized setting, there are a set of n choices, for each of the T rounds,
and we are required to make a single choice on every round. After we make that choice,
the costs associated with making the decision at time t are revealed as a vector m(t). Our
objective is to compute a distribution p(t) over the set of decisions at every time step,
so that the expectation

P
t2[T]

P
i2[n] pi

(t)
mi
(t)=

P
t2[T] (p

(t); m(t)) is close to the cost of

a single best decision mini
P

t2Tmi
(t) we could have made in hindsight. The algorithm

quite simply maintains a weight function w(t)2Rn of the decisions at every time step, and
declares p(t)�w(t)/�(t), where �(t)�

P
i2[n] wi

(t). After every decision, the weights are
multiplicatively updated to suppress costly choices.

Algorithm 1

10 Section 6

Initialize : Fix 0< �6 1/2, and set w(1)=1
¡!8t2 [T]: p(t) ¡w(t)/�(t). Use this distribution to sample a choice
¡! observe m(t), and penalize costly decisions: wi

(t+1) ¡wi
(t)¡1¡ �mi

(t)�
Assuming all costs

����mi
(t)����6 1, the MW algorithm guarantees that after T rounds, for

any decision i2 [n], the following bound holds :P
t2[T] (m

(t); p(t))6P
t2Tmi

(t)+ �
P

t2T
����mi

(t)����+ ln(n)
�

=)
P

t2[T] (m
(t); p(t))6P

t2T (m
(t)+ � jm(t)j; p)+ ln(n)

�

Note that the factor of two from the deterministic setting is now dropped to one. As
noted in [5], the Hedge algorithm [22] of Freund and Schapire is a variation of MW, except
the weights are updated with an exponential multiplicative factor :

wi
(t+1) ¡wi

(t)
e¡�mi

(t)

to obtain a similar looking regret bound (using e¡�x6 1¡ �x+ �2x2 8j�xj6 1):
8i2 [n]:

P
t2[T] (m

(t); p(t))6P
t2Tmi

(t)+ �
P

t2T
�P

j2[n]
¡
mj
(t)�2pj(t)	+ ln(n)

�

The authors of [22] go on to apply this to their Go�del award winning conception of
AdaBoost.

6.2 Multiplicative weights as constructive LP duals
[5] show the connection between MW and LPs by giving the example of learning a sep-
arating hyperplane classifier. This is a classic task in machine learning. As they note,
the following can be regarded as a �constructive� version of LP duality. When solving
constrained optimization problems, each decision represents a constraint, with costs repre-
senting the corresponding potential function. Iteratively re-weighting these costs can now
be seen as a gameified version of Lagrangian optimization.

Suppose we are given m points of labelled data (xi; yi), xi 2Rn; yi 2 f�1g, and our
objective is to find a separating hyperplane w satisfying sign((w;xi))= yi, or equivalently
(yixi; w)> 0 for all xi. Assuming w.l.o.g, w 2�n, where �n is the probability simplex
f�2Rn:

P
i�i=1;�<0g, and renaming yixi=zi, the problem reduces to an LP feasibility

problem 9?w 2�n: 8j 2 [m](zj ; w)> 0.
Assuming that there is a large margin solution; i.e 9">0;w?:8j2 [m]: (zj ;w?)>", MW

can be used to solve this as follows. Define ��maxj kzjk1, and set � ¡ "/2�, and set
the costs as mi

(j)=(zj)i/�. (
����mi

(j)����6 1)
In each round t, we let w to be the distribution p(t) generated by MW, and look at an

unsatisfied constraint (a misclassified example) j, and usem(j) for weight update. We keep
doing this until we find a feasible point. As shown in [5], we can safely terminate after
d4�2 log(n)/"2e iterations.

6.3 The matrix multiplicative weights algorithm
The MW algorithm can be extended to get a version that solves SDP feasibility (and hence
by convexity, optimization) using a similar exponential weight update rule.

The decisions now correspond to unit vectors v(t)2Rn; v(t)
T
v(t)=1. The costs are given

as a matrixM (t)2Rn�n, and the cost of each decision is v(t)
T
M (t)v(t). Just like before, we

assume all singular values of M (t) are 61. The objective at each time step is to compute
a distribution D(t) over our choices, such that the expected cost

P
tEv�D(t)[v

(t)TM (t)v(t)]
is close to the best fixed decision vT (

P
t2TM

(t))v, which is just the smallest eigenvalue ofP
t2TM

(t).

Semidefinite programming 11

Denote the inner product on symmetric matrices C ; X 2 Sn as hC; X i =
Tr[CX] =

P
ij CijXij, where Tr[:] is the trace operator. Ev�D(t)[v

(t)TM (t)v(t)] =

Ev�D(t)[Tr[v
(t)TM (t)v(t)]] = Ev�D(t)[Tr[M

(t)v(t)v(t)T]] = Tr[M (t)Ev�D(t)[v
(t)v(t)T]] = hM (t);

Ev�D(t)[v
(t)v(t)T]i.

Denote Ev�D(t)[v
(t)v(t)T]=P (t). It's easy to see that P (t)<0;Tr[P (t)]=1. P (t) is a hence

a density matrix (appendix A). And it's exactly what MMW computes at each step. Any
distribution D(t) with this density suffices. The eigendecomposition of P (t) gives one such
discrete distribution.

Algorithm 2

Initialize : Fix 0< �6 1/2, and set W (1)= I
¡!8t2 [T]: P (t) ¡W (t)/�(t), with �(t)�Tr[W (t)].
¡! observe M (t), and update weights as : Wi

(t+1) ¡Wi
(t)
e¡�M

(t)

Using an additional inequality Tr[eA+B]6Tr[eAeB], we have a matrix version of the
familiar regret bound: 8v 2Rn; vTv=1P

t2[T] hM
(t); P (t)i6P

t2[T] v
TM (t)v+ �2

P
t2[T] h(M

(t))2; P (t)i+ ln(n)
�

We'll consider the following form of feasibility:9?X 2�n
n: 8j 2 [m] hAj; X i> 0, where

�n
n is the set of density matrices fX 2Sn:Tr[X] = 1; X < 0g. (This shape is also called a

spectrahedron.) When all matrices are diagonal, this is the same is LP feasibility discussed
earlier.

Assuming there is a large margin solution: 9" > 0s:t hAj ; X i> ", and defining �
maxj kAjk (largest operator norm), setting � ¡ "/2� and the costs as M (t)=Aj/� for
some unsatisfied constraint j, we run the same procedure, to get an exactly analogous
algorithm. The running time is again bounded by d4�2 log(n)/"2e.

6.4 A fast approximate primal-dual algorithm for SDPs
We'll now briefly discuss the faster version of this algorithm presented in [6]. The primal
SDP is :

max hC;X i s:t8j 2 [m]: hAj; X i6 bj ; X < 0
and its dual is

min hb; yi s:t
P

j2[m] yjAj<C; y< 0

Optimization is reduced to feasibility using binary search. Assume A1= I ; b1=R=)
Tr[X]6R, which serves as a bound for binary search. Every feasibility subproblem is to
construct either a primal feasible PSD matrix X with value >�, or a dual feasible vector y
with value6�(1+�) for arbitrarily small �>0. The algorithm mimics MMW by generating
iterates X(t) over 16 t6T time steps. At the center of this algorithm is an oracle O which
is used to generate these iterates. O tries to find a dual vector y2D�=fy: y<0: hb; yi6�g
subject to the constraints

P
j2[m] hAj ;X

(t)iyj¡hC;X(t)i>0. Note that this is an LP with
a single non-trivial constraint.

If there is no such y 2D�, we have a feasible X with value >�. And if O succeeds in
finding such a y, X(t) is either primal infeasible or has value 6�. The algorithm's progress
is measured using the width property � of the oracle O: �� supy2D� k

P
j yjAj ¡Ck (k:k

denotes operator norm)

12 Section 6

The authors of [6] prove that if algorithm 3 proceeds for T > 8�2R2ln(n)
�2�2

iterations, then
y?� ��

R
e1+

1

T

P
t2[T] y

(t) is a dual feasible solution with objective at most (1+ �)�. Thus,
we get a feasibility subroutine that we can use inside the binary search. Note that R
must be known a priori . Moreover they obtain fast approximation algorithms for several
optimization problems, including one for the SDP relaxation of max-cut.

Algorithm 3

Initialize: W (1) I , " ¡ ��/2�R, "0 ¡¡ln(1¡ ")
8t2 [T]:
Define X(t)�RW (t)/Tr[W (t)]
Invoke O(X(t)) to get y(t). If it fails, stop and output X(t) as a feasible solution with
value >�
else, set the MMW �costs� as M (t) ¡

¡P
j2[m]Ajyj

(t)¡C + �I
�
/2�

and update the weights as W (t+1) ¡W (t)e¡"
0M(t)

6.5 A quantum algorithm for solving SDPs

[13] gives a quantum algorithm based on the matrix multiplicative weights method, with
a claimed worst-case running time of �(nm

p
s2poly(log(n); log(n);R; r;1/�)). As before,

parameter R is an upper bound on Tr[X] for primal feasible X. The authors also reduce
the dual SDP to the case where b<1, r is an upper bound on 1Tb. � is an additive error
tolerance for the dual solution as before. Note however that the running time analyses show
the algorithm to be prohibitively costly in terms of R and �. The authors also believe that
this can be mitigated significantly.

Of course, simply writing the optimal primal/dual takes
(min (n2; m)) time, so the
problem is framed instead as the following : given A1; A2: : :Am; Am+1�C approximate
the optimal value of the above primal and/or dual SDPs. The quantum algorithm is
also required to produce an estimate of kyk1 and/or Tr[X], and also be able to generate
samples from the distribution p� y/kyk1 and/or from the density ��X /Tr[X]. Like in
HHL, the matrices are taken to be s-sparse, and are given by an oracle that takes indices
j 2 [m+1]; k2 [n]; l2 [s] and compute the lth non-zero element nzjk(l) of the kth row of Aj
as : jj; k; l; zi¡!jj ; k; l; z�nzjk(l)i.

One of the main ideas in [13] is to use �Gibbs samplers� � quantum circuits that given
such an oracle OH for the entries of a an s-sparse Hamiltonian H produce a state j i
with density resembling a Gibbs state j ih j � eH /Tr[eH]. Gibbs sampling is a widely
studied topic, the most prominent example of which is the work on a quantum version of
the Metropolis algorithm [32], [36].

The authors noticed that applying amplitude amplification (section 3.1) to Gibbs sam-
plers straightaway gives a quadratic speedup w.r.t n. In fact, if the Gibbs sampler has
some really nice properties, we can get even exponential speedups. Furthermore, they claim
that replacing the oracle O of [6] with such samplers is also possible, and gives a quadratic
speedup w.r.t m.

The main contribution can thus be summarized as follows: using these samplers allows
us to quickly compute the multiplicative weight updates, hence the quantum speedup.
Several improvements have since been proposed [12], [33].

Semidefinite programming 13

7 Summary

We explored some quantum algorithms encountered in combinatorial and constrained
optimization. The reader must have noticed the importance of Hamiltonians (section
3.3) in constructing quantum algorithms that handle matrices. Which is why we have
some additional discussions in appendix B on a connection between Hamiltonians and
quantum random walks. Hamiltonians with sparse entries in particular are the ones that
are amenable to quantum speedups.

Something worth emphasizing is the interdisciplinary nature of the discussed topics.
Most of these developments wouldn't have been possible if not for the collaboration between
people working in different fields, ranging from theoretical computer science, to physics,
to engineering. This has to inspire awe in anyone interested in quantum computing.

The author hopes that this paper serves as a good starting point for exploring opti-
mization algorithms from a quantum point of view, and thanks the reader for their interest.

14 Section 7

Bibliography

[1] Scott Aaronson. Read the fine print. Nature Physics , 11:291�293, 04 2015.
[2] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks on graphs.

2000.
[3] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev. Adiabatic

quantum computation is equivalent to standard quantum computation. 2004.
[4] Andris Ambainis. Variable time amplitude amplification and a faster quantum algorithm for solving

systems of linear equations. 2010.
[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-

algorithm and applications. Theory of Computing , 8(6):121�164, 2012.
[6] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs.

J. ACM , 63(2), may 2016.
[7] Sheldon Jay Axler. Linear Algebra Done Right . Undergraduate Texts in Mathematics. Springer,

New York, 1997.
[8] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development ,

17(6):525�532, 1973.
[9] Dominic W Berry. High-order quantum algorithm for solving linear differential equations. Journal

of Physics A: Mathematical and Theoretical , 47(10):105301, feb 2014.
[10] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Efficient quantum algo-

rithms for simulating sparse hamiltonians. Communications in Mathematical Physics , 270(2):359�371,
dec 2006.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization . Cambridge University Press, Cam-
bridge, England, mar 2004.

[12] Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and
Xiaodi Wu. Quantum sdp solvers: large speed-ups, optimality, and applications to quantum learning.
2017.

[13] Fernando G. S. L. Brandao and Krysta Svore. Quantum speed-ups for semidefinite programming.
2016.

[14] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. 2002.

[15] Andrew M. Childs. On the relationship between continuous- and discrete-time quantum walk. Com-
munications in Mathematical Physics , 294(2):581�603, oct 2009.

[16] Andrew M. Childs, Edward Farhi, and Sam Gutmann. Quantum Information Processing ,
1(1/2):35�43, 2002.

[17] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision. SIAM Journal on Computing ,
46(6):1920�1950, jan 2017.

[18] Christopher M. Dawson and Michael A. Nielsen. The solovay-kitaev algorithm. Quantum Info.
Comput., 6(1):81�95, jan 2006.

[19] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algo-
rithm. 2014.

[20] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation by
adiabatic evolution. 2000.

[21] Edward Farhi and Sam Gutmann. Quantum computation and decision trees. Physical Review A,
58(2):915�928, aug 1998.

[22] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences , 55(1):119�139, 1997.

[23] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. ACM , 42(6):1115�1145, nov 1995.

[24] Lov K. Grover. Quantum computers can search rapidly by using almost any transformation. Physical
Review Letters , 80(19):4329�4332, may 1998.

[25] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical Review Letters , 103(15), oct 2009.

[26] J Kempe. Quantum random walks: an introductory overview. Contemporary Physics , 44(4):307�327,
jul 2003.

[27] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of Research
and Development , 5(3):183�191, 1961.

[28] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and
unsupervised machine learning. 2013.

Bibliography 15

[29] Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics , 2, 2014.
[30] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information . Cam-

bridge University Press, Cambridge, England, dec 2010.
[31] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love,

Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum
processor. Nature Communications , 5(1), jul 2014.

[32] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete. Quantum metropolis
sampling. Nature , 471(7336):87�90, mar 2011.

[33] Joran van Apeldoorn, Andrá s Gilyén, Sander Gribling, and Ronald de Wolf. Quantum SDP-Solvers:
better upper and lower bounds. Quantum , 4:230, feb 2020.

[34] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. Physical Review
Letters , 109(5), aug 2012.

[35] Noson S. Yanofsky. An introduction to quantum computing. 2007.
[36] Man-Hong Yung and Alá n Aspuru-Guzik. A quantum�quantum metropolis algorithm. Proceedings

of the National Academy of Sciences , 109(3):754�759, jan 2012.

Appendix A Density operators
There is an alternate formulation [30] of the postulates which ascribe quantum systems
with a density operator � acting on the corresponding Hilbert space. For pure states
j i, the density operator is given by �� j ih j. The advantage in using the density
operator formalism is its ability to describe ensembles of pure states. Physical systems with
exactly the state j i are difficult to prepare, and we might have to work with a system
having state j ii with probabilities pi. The ensemble fpi; j iig is defined to have density
��

P
i pij iih ij. A state is hence pure when only one of the pis is 1.

E.g consider a qubit we know to have either state j0i or j1i with 1/2 probability.
The density is then 1

2

�
1 0
0 1

�
. Notice that this isn't the same as saying the qubit is in the

pure superposition state j0i+ j1i
2

p , which has density 1

2

�
1 1
1 1

�
. Densities are characterized

by positive definite operators with trace 1. Different ensembles can give rise to the same
density operator, which is what ultimately governs measurement statistics.

Analogous to the Schro�dinger equation i~ d
dt
j (t)i= Ĥ j (t)i describing time evolution

of state vectors, the von Neumann equation i~@�
@t
= [Ĥ ; �] describes time evolution of

densities. Here [Ĥ ; �] denotes the commutator Ĥ�¡ �Ĥ. As expected, for time independent

Hamiltonians �(t)= e¡iĤt/~�(0)eiĤt/~. I.e a unitary transform U maps densities as: �¡!
U�U y.

Appendix B Quantum random walks
Random walks are powerful tools when it comes to analyzing and designing randomized
algorithms. Quantum random walks sometimes have an advantage over classical random
walks. A great introductory survey on this topic is [26], and our discussion will be based
around it. This section is in the appendix because of the arguably tangential nature of this
topic.

Classical random walks are quite invaluable in theoretical computer science. They
provide a general paradigm for sampling from exponentially large spaces. Important prop-
erties of random walks that affect their usage in algorithms are their mixing times and
hitting times [2]. Quantum random walks behave quite differently than their classical coun-
terparts in these regards, which explains their role in obtaining faster quantum algorithms.
We'll go over some basics of quantum random walks. We'll also glance over a connection
between random walks and Hamiltonians.

16 Appendix B

B.1 A discrete quantum random walk

As an example, we'll briefly analyse the simplest of discrete random walks. Consider the
state of a quantum particle varying over two properties � its �spin� f"; #g, and its position
on a 1D lattice : Z. The spin state of an arbitrary superposition is hence a vector in
HS= f�j"i+ � j#i:�; � 2C; j�j2+ j� j2=1g. Similarly, the superpositions over positions
are vectors in HP = f

P
x2Z�xjxi:

P
x j�xj

2= 1g. The complete state description of the
particle is a vector jsi
 jpi 2HS
HP .

Define the �coin-flip operator� C�H
 I , H being the familiar Hadamard; and �condi-
tional-shift operator� S= j"ih"j

P
x2Z jx+1ihxj+ j#ih#j

P
x2Z jx¡1ihxj. The particle

jumps right if its spin is up, and left if down: S(j"/#i
 jxi)= (j"/#i
 jx� 1i).

(a) An asymmetric quantum walk (b) A symmetric walk.

Figure 2. Simulations of the discrete quantum random walk

For a particle in superposition, S acts linearly, and the resulting amplitudes may add
or cancel each other. Consider T alternate applications of S and C applied to an initial
state j#i; measuring the position after each time step collapses the state to a definite dis-
placement x. The resulting behaviour is identical to the familiar classical random walk with
the resulting statistics resmbling the Gaussian approximation of the binomial distribution.
I.e for large T the variance scales as �2�T , while the mean is 0.

However, if we don't measure the position at every step, the interferences over all possible
paths after T steps produce a probability distribution over Z that can be skewed, and can
even be bimodal . The distribution in figure 2 (a) is a result of (SC)T(j#i
j0i). C is asym-

metric, and prefers j#i. Figure 2 (b) shows the symmteric results of (SC)T
��

j"i+ ij#i
2

p
�

j0i
�
. It can be shown that this quantum walk has a variance that scales as �2�T 2.

B.2 Continuous time random walks

Viewing Z as line graph, we can generalize the above to arbitrary graphs to some extent.
[26] cites some studies in this regard, and discusses it in some detail. The procedure of
coin flipping and measuring is not really needed for continuous time random processes.

Quantum random walks 17

Borrowing the following fromWikipedia, we analyze a single spin-free quantum particle
with massm and a 1D freedom of position x. Its position at time t being completely deter-
mined by the wave function (x; t) satisfying the zero-potential Schro�dinger equation :

i~ @
@t
= p̂2

2m
, where p̂=¡i~ @

@x
is the 1D momentum observable.)i~ @

@t
= ¡~2

2m

@2

@x2
.

Discretizing x as Z�x� f : : : ;¡2�x;¡�x; 0;�x; 2�x; : : : g, the double derivative is

replaced by @2

@x2
! ((j+1)�x; t)¡ 2 (j�x; t) + ((j ¡ 1)�x; t)

�x2
� LZ (j�x; t)

�x2
, giving us the evolu-

tion law :
i
@

@t
=¡!�xLZ�x . !�x�

~
2m�x2

is a constant, and LZ�x is the Laplacian of the line
graph Z�x.

For arbitrary graphs G(V ;E), the graph Laplacian is defined as LG�DG¡AG, with
DG the degree matrix (diagonal of degrees) and AG the adjacency matrix.

In continuous time random walks on graph G, the evolution law is given @

@t
=¡i!LG ,

where the !LG itself acts as the Hamiltonian [26] with the unitary U(t)=e¡i!LGt. This was
the key idea of Farhi and Gutmann [21], which they use to study decision trees, effectively
considering quantum computing as a continuous time random walk. Furthermore, [16]
exhibits a finite graph with an exponential separation in expected hitting times.

There are a few issues with defining hitting and mixing times in quantum vs. classical
walks. Consider the fact that any classical random walk on a finite graph approaches a
stationary distribution p(t) regardless of the initial distribution p(0) � it effectively �loses
memory�. This is not possible for reversible unitary transforms. [26] explains how we can
still analyze such dynamics, using the Cesa�ro average distribution instead : c(t)�

P
�6sp

(�)

for some 0<s6 t chosen uniformly at random.

18 Appendix B

	1 Introduction
	2 A crash course in quantum computing
	2.1 Postulates
	2.2 The quantum gate model
	2.2.1 Composite states
	2.2.2 Qubit gates
	2.2.3 Measurement

	2.3 The bra-ket notation

	3 Some standard quantum algorithms
	3.1 Amplitude amplification
	3.2 Phase estimation
	3.3 Hamiltonian simulation

	4 Adiabatic quantum computation
	4.1 The quantum adiabatic algorithm
	4.2 The Ising model, and quadratic binary optimization
	4.3 A variational approximation algorithm

	5 The HHL algorithm for solving linear systems
	5.1 The algorithm
	5.2 Applications and limitations

	6 Semidefinite programming
	6.1 The multiplicative weights algorithm
	6.2 Multiplicative weights as constructive LP duals
	6.3 The matrix multiplicative weights algorithm
	6.4 A fast approximate primal-dual algorithm for SDPs
	6.5 A quantum algorithm for solving SDPs

	7 Summary
	Bibliography
	Appendix A Density operators
	Appendix B Quantum random walks
	B.1 A discrete quantum random walk
	B.2 Continuous time random walks

