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1 Introduction

In this report, I will describe a quantum algorithm to solve the subset sum problem,
and the result of running a small instance on a real quantum computer. I'll also
provide references to some related ideas / papers that I found interesting.

Section 2 introduces the subset sum problem, and some classical algorithms for
solving it. Section 3 discusses Fourier states and related topics. Section 4 describes
the construction of an oracle that can be used within Grover's algorithm [4]. Section
5 presents the results of running the resulting circuit on a trapped ion - based
quantum computing device.

2 The subset sum problem

The (promised) subset sum problem can be formulated as follows :
Given a list L of positive integers [v0; v1; : : : vn¡1], and a target sum t, the task

is to construct a subset S �f0; 1; : : : ; n¡ 1g with
P

i2S vi= t.
Equivalently, representing subsets of indices with n¡bit strings s= s0s1: : :sn¡1,

we are searching for a string s 2 f0; 1gn such that
P

i
sivi= t. For simplicity, we

assume the �promise� version of this problem where such a subset is guaranteed to
exist. There also exist techniques to solve approximate versions of this problem.
While approximate quantum algorithms are fun to think about, we won't be going
into it for this problem.

The running time and space requirements of algorithms used to solve this problem
depends on two parameters � the number of elements n and the bit precision k
(
P

i
xi< 2k). This problem is known to be NP-complete [7]. Therefore it's unlikely

that we can solve it in polyomial time, even with a quantum computer. Table
1 shows the computational complexities of a few classical algorithms.

Grover search is marked with an asterisk because the time complexity is mea-
sured with the circuit depth and the memory is measured in number of qubits, while
those for the classical algorithms are in clock cycles and ordinary bits of a standard
RAM-model computer.

To use Grover's algorithm, we need to construct a quantum circuit �recognizing�
strings of subsets that sum to the required target. Constructing such an oracle
effeciently required (to some extent) the use of special qubit states � Fourier states.
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Algorithm Time Memory
Brute force O(nk2n) O(n+ k)

Dynamic programming[7] O(nk2k) O(nk2k)

�Meet in the middle�[5] O(nk2n/2) O(nk2n/2)

Optimized meet in the middle[10] O(nk2n/2) O(nk2n/4)

*Grover search O(nk2n/2) O(n+ k)

Table 1. Time and space complexities of various algorithms

3 Fourier states

This section will borrow notations and terminology from this paper [1] titled �Fast
parallel circuits for the quantum Fourier transform�. A k ¡ bit integer x 2Z2k, is
said to have a binary representation xk¡1xk¡2: : :x02f0; 1gk. Similarly, the decimal
value 0:x0x1: : : is understood as equal to x0/2+x1/4+ � � �+ .

The quantum state jxk¡1xn¡2: : :x0i is called a computational basis state (or a
Z-basis state), and the following state is called the Fourier basis state.
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2k
p (j0i+ e2�i(0:x0))(j0i+ e2�i(0:x1x0)): : :(j0i+ e2�i(0:xk¡1xk¡2: : :x0))

For convenience, define j��i= 1

2
p (j0i+ e2�i�j1i), which on the Bloch sphere lies

on the x¡ y plane with an angle of 2�� from the x¡axis as viewed from the positive
z direction. (The visualizations provided in the attached presentation correspond
to this picture.) Using this notation, we get

j xi= j�0:x0ij�0:x1x0i: : :j�0:xk¡1xk¡2: : :x0i

The quantum Fourier transform is the unitary operation
P

x2Z2k
j xihxj, i.e it

maps jxi! j xi8x2Z2k. There also exist related transformations for preparing a
Fourier basis state j xi given jxi as jxij0i¡!jxij xi. (This is a simple modification
of the circuit given in [8], where we first apply Hadamards on the second register,
and then apply the respective rotations in parallel to get a depth of O(k).)

The authors in [1] push this idea to the limit by studying the inverse problem
of quantum Fourier phase computation � a unitary mapping j xij0i to j xijxi, and
using its inverse to compute the mapping

jxij0i! jxij xi! j0ij xi (as noted by [6])

with a circuit depth smaller than O(k2).

After the problem in homework 4, I too started thinking about Fourier state
computation, and whether it would result in better than O(k) circuits if we discard
small phase rotations. That's when I found the paper [1] with a claimed depth of
O(log(k)+ log(log(1/"))) for an "¡ approximate QFT.
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Coincidentally, for the case of the exact QFT, the authors appeal to the algo-
rithm of Scho�nhage and Strassen [9] being implemented reversibly, which was one
of the things I was originally thinking of doing my term project on.

As we will see in the next section, we can use the concept of Fourier states and
the quantum Fourier transform to perform controlled additions.

4 The subset sum oracle

For a fixed list L= [v0: : :vn¡1], let f :Z2n!Z2, f(s)�

(
1;

P
i
sivi= t

0; otherwise

Finding a subset with sum t is equivalent to searching a string s2Z2n with f(s)=
1. If we can construct a quantum circuit for the unitary Uf=

P
x2Z2n

(¡1)f(x)jxihxj,
it will be possible to use Grover's algorithm to amplify the amplitudes corresponding
to the strings with f(x)=1, and then measure in the computational basis to obtain
those strings with high probability.

Define h:Z2n!Z, h(s)�
P

i=0

n¡1
sivi. The quantum circuit to detect if h(s) = t

can be broken down into an adder, and a detector. The adder performs the mapping
on two registers jsin and jyik as jsijyi! jsij(y+ h(s))(mod 2k)i8s2Z2n; y 2Z2k,
using n+k qubits. The detector acts on the second register by applying X(1¡tn¡1)

X(1¡tn¡2)
 � � � 
X(1¡t0), followed by a multi-controlled-X gate on an ancilla qubit
with the second register as control. Effectively we implement the mapping

jsijyijzi¡!jsij(y+h(s))(mod 2k)ijz� f(s)i

for all valid s; y; z. Finally, to reuse the second register we need to uncompute
the addition : jsijyijzi ¡! jsij(y + h(s))(mod 2k)ijz � f(s)i ¡! jsijyijz � f(s)i.
Initializing the ancilla qubit in j0i¡ j1i

2
p , the circuit will then implement the map that

we require : jsijyi
�
j0i ¡ j1i

2
p

�
! (¡1)f(s)jsijyi

�
j0i¡ j1i

2
p

�
All that remains is to implement the adder. While it's easy to convert standard

sum+carry based bitwise adders into reversible circuits, note that we also need
to condition the addition of vi to a target register controlled by the qubit jsii.
Reversible addition itself needs a reversible and-gate, which has to be implemented
with Toffoli or Fredkin gates [11], [3]. However, multi-controlled gates are costly.

A better alternative is to use Fourier states (section 3) to implement addition.
This idea is explained in [2]. We can use controlled phase gates

P (�)�
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0 1 0 0
0 0 1 0

0 0 0 e2�i�

1CCCCCCA
which is a continuous analog of the controlled-Z gate (CZ=P (1/2)).
Note that P (�)jzij�'i= jzij�('+z�)i. Therefore applying P (x1/2j) between the

control qubit and the target register's jth qubit (8j 2f0; 1; : : : k¡ 1g) is equivalent
to mapping jzij yi!jzij y+zx1i8z2Z2; y2Z2k. I.e, �controlled addition� in Z -basis
is transformed to �controlled rotation� in Fourier basis.
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However, since we need the second register to be in the Z -basis for the detector
to work, we have to use the inverse quantum Fourier transform to map j xi! jxi.
Lastly, to bring j00: : :0i! j 0i= j�0ij�0i: : :j�0i, we simply apply Hadamard gates.

In summary, the adder circuit consists of Hadamards to convert jsij0i!jsij 0i,
followed by controlled phase rotation with ith wire of the first register as control, to
add controlled phase rotations corresponding to vi on the second register, for every
i2f0;1;:::n¡1g. (Notice that the circuit's structure depends on the instance (L; t),
and the written code constructs the circuit.) Once the Fourier state corresponding
to the subset sum is prepared, an inverse Fourier transform maps the sum to Z -basis
for the detector

jsij0i! jsij 0i! jsij h(s)i! jsijh(s)(mod 2k)i

5 Results

I wrote the code (github.com/sumeetshirgure/qchack2022-microsoft-challenge) to
generate the oracle and to perform Grover search, and used it to construct a circuit
solving a small subset sum instance L = [5; 7; 8; 9; 1] with a target t = 16. This
instance needs n= jLj=5, k=5, and required n+ k+1= 11 qubits. There are two
possible solutions : 01101 and 01010. The number of Grover iterations to maximize
the amplitude of the solution subspace is given by �

4

32
2

q
� 3. Of course, in a real

application, the number of solution will not be known. But it can be estimated from
the eigenvalues of the oracle described in section 4.

This circuit was then executed on the 11 qubit trapped-ion quantum computer
developed by IonQ, which was the largest available at the time. The histogram in
figure 1 statistics show the measurement results of that execution.

Figure 1. Measurement statistics from the quantum computer.
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Note that the mode is a solution (01101), which is quite impressive for a circuit
with depths of the order of a thousand or so one and two qubit gates, implemented
without error correction. It's not entirely clear why the other solution (01010) isn't
as frequently observed. Also note that the all zero string (00000) is observed a lot
frequently, suggesting erasure errors in the device.

6 Conclusion

In this project, I wrote the code to construct quantum circuits solving the subset
sum problem.

To use Grover's algorithm, a significant portion of the project was constructing
an oracle that recognizes subsets that have the required sum. To do that, I designed
a custom adder that computes the sum of a selected subset. To circumvent using
reversible controlled-and gates, the adder performs rotations in the Fourier basis
using controlled phase gates, and uses an effecient circuit for the quantum Fourier
transform to switch between so called Z -basis and Fourier basis encodings for k¡bit
integers.

Finally, I executed a small instance of the problem on a quantum computer and
analyzed the resulting measurement statistics. As an ambitious future exercise,
I would like to do something similar, either other NP-hard problems, or perhaps
smaller instances of subset sum, with error correction.

Thank you for reading.
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