
Scalable decoders for quantum surface codes
by Sumeet Shirgure

USC, Fall 2022

1 Introduction

This article is intended to be a report of my term project for EE 599. Rather
than a project report, this reads more like a letter, where I mostly describe recent
developments and sometimes give my opinions on the matter. I understand that
in my proposal I stated I will be studying and comparing two specific decoding
algorithms for surface codes, but hopefully upon further reading it will be clear as to
why I decided not go through with it. It turned out that both of them were based
on related ideas, and would be combined into a single, better decoder.

Instead I will review some challenges in surface code decoding that present
themselves when we might try to scale up the number of topologically encoded
logical qubits, which was my original motivation to study said topics to begin with.

Section 2 briefly reviews the surface code, and motivates the decoding problem.
Section 3 discusses the history and recent developments in decoding algorithms for
the surface code. Section 4 discusses the the area of superconducting electronics and
how it could be relevent when we try scaling up the surface code. Section 5 discusses
alternatives to minimum weight matching based algorithms.

2 Surface codes

Surface codes like the toric and planar codes have become quite popular recently. A
recent landmark being the experiment [1] on Google's Sycamore processor, where the
objective was to remember one qubit of information encoded in a surface code over
a period of time extending beyond any single constituent physical qubit's lifetime.

Surface codes were introduced in [7]. They are usually defined on a square lattice,
with the stabilizer operators defined around each vertex v : Xv��q2vXq and each
face f : Zf��q2fZq. The stabilizer subspace of the code is also sometimes identified
with the ground state of the Hamiltonian H =¡

P
v
Xv+

P
f
Zf.

Section IV of [7] discusses the physical notions behind error correction. We
assume uncorrelated X and Z errors. Since this is a CSS code [19], we can focus on
one of the X or Z errors, and use the same ideas for the other kind on a dual graph.

A chain of qubit errors on the lattice is only detected at its endpoints. Given
multiple non-trivial syndrome measurements, the weight of chains that could have
caused the syndrome corresponds to an increase in the energy of the system from
its ground state.
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Moreover the X and Z stabilizer errors have an interpretation of there being
anyonic quasiparticle excitations present on the surface. These quasiparticles are
of �charge� and �flux� types respectively with characteristic energies. The chains of
errors are then analogous to electric and magnetic flux tubes. The ground state thus
represents an anyonic vaccuum so to speak. This picture is quite insightful when it
comes to the threshold for logical error supression (section 4).

If we take measurement errors into account, then repeated measurements add a
time-like dimension to the lattice, the analysis of which is otherwise mostly the same.

That being said, minimizing the total energy of chains in space-time that show
a syndrome is then reduced to finding a minimum weight matching on a weighted

graph with weights that go as �s log
�
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1¡ q

�
, where �s and �t are

space and time-like distances and p; q are data and measurement error rates respec-
tively (refer to [7] for details.) It is straightforward to see that this is proportional
to the log-likelihood of presence of such a chain. Logarithms are convenient because
they convert multiplication of edge probabilities to a sum of log-likelihoods. The
connection to energy comes from statistical physical considerations, which also gives
the said accuracy threshold.

To quote [7] (section V), �we assume this classical computation [of finding the
minimum weight matching] can be performed instantaneously and flawlessly�. While
not entirely incorrect, the latency with which we are able to do so indeed puts a
lower bound on the gate times for the logical qubit. Furthermore, when the number
of logical qubits grows, the challenge is to do it �instantaneously� in parallel while
not requiring too much space, time, energy or entropy per qubit . This necessitates
research into fast matching algorithms..

3 Decoding algorithms for surface codes

The initial approach to solving this matching problem was by constructing a complete
graph with a weighted edge between every pair of non-trivial syndrome measure-
ment (called �defects�), and using the famous1 Blossom algorithm [8] on the resulting
graph. While correct, it's not the most effecient, in that it has a worst case run
time of O(mn2), where the input graph has m edges and n vertices, which is O(n4)
for the kinds of graphs we provide.

The authors of [5] provide a seemingly different decoding algorithm which relies
on fusing clusters of errors. Their idea is to start with an �island� for every non-
trivial syndrome, �grow� each island uniformly until two or more fuse together into a
single island, and keep repeating this for every island with an odd number of defects.
Whenever two islands collide, there must be a path between some unmatched node
in each of the two islands in the resulting matching.

1. The Blossom algorithm really is quite well known to anyone with background in theoretical computer
science and graph theory. Personally I'm quite surprised by its relevance in quantum physical phenomena.
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While the analysis in the paper considers both erasure errors and Pauli errors,
this is roughly what is happing. Some researchers noticed the similar threshold
values for this and the one obtained from solving the minimum weight matching,
which raised suspicions that the faster algorithm really might be solving the latter
exactly. I believe that is indeed the case.

To see why, let's consult this [9] paper by Fowler, which proves that minimum
weight matching for such codes can be solved exactly for the kinds of graphs in topo-
logical quantum error correction (TQEC), with parallel computers whose numbers
grow linearly with number of physical qubits, while taking O(1) time. This itself
should have been the first hint that an O(n) time algorithm for solving it exactly
must be possible, considering that we can just serialize this entirely.

[9] does this by casting the matching problem as a linear program. The radii
of the �islands� in some norm are really the dual variables ye in that same LP.
Compare figure 4 in [9] with figure 3 in [5]. I believe the small discrepancy in
thresholds in the latter can be explained by the fact that the so called Union-
Find [5] decoder only grows the islands in integer amounts, but the complete linear
programming formulation requires fractional variables. Of course there are other
details surrounding constructing the matching itself when two islands merge, which
is taken care of using alternating trees and the same ideas of from [8]

I found two implementations [12] (�pymatching� version 2) and [23] (�fusion-
blossom�) that claim linear time perfect matching for TQEC graphs. [23] also pro-
vides animations that show the ideas discussed above. They cite each other, and
have yet to write papers on their software, but other than maybe a few code-level
optimizations, I really don't see how they could be too different from being a serial
implementation of the ideas from Fowler's original paper [9].

Note that these fast algorithms are only possible because the graphs on which
we are solving the minimum weight matching have some special structure. Consider
a matching M on a graph G that has two edges, e1 between nodes a and b and e2
between nodes c and d, and e1 intersects e2 at x. If there is a metric on this space,
then from its corresponding triangle inequality on triangles a; c;x and b; d; x, we can
see that it is always better to match either a with c or a with d.

It is a well known result in topology/graph theory [3] that planar graphs are
sparse (i.e the edges grow linearly with the vertices m�O(n)). Moreover, recently it
was also shown [2] that perfect matching for planar graphs is in class NC 2. Perhaps
this can be considered a generalisation of [9], although it's not as strong as needing
just O(n) processors and O(1) time. This means that we would never explore more
than a linear number of edges.

2. Class NC (�Nick's Class�) is the set of decision problems solvable by O(nk) parallel processors
in time O(logcn) for problem instances growing as n. Just as the class P can be thought of as problems
effeciently solvable on a standard computer, NC is the class of problems that are effeciently parallelisable
on polynomially many computers. (Usually understood with a PRAM [14] model). Of course, NC � P

because we can simulate any algorithm in NC serially to get an algorithm in P .
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The ideas presented in [9] are very interesting for other reasons as well. They
enable research into what are called application specific integrated circuits (ASICs)
for parallelised implementations of the decoding algorithm, as we will see in the
following section.

4 Superconductivity

Decoders (ASICs or otherwise), when implemented on CMOS circuits are prone to
high thermal emissions, which make them impractical to be of any use near the frigid
environment of the quantum computer itself. The same is true for control electronics
that are responsible for applying qubit gates.

If this apparatus is situated externally, there's likely some kind of cabling that
crosses a thermal barrier. Presently, the plan to scale the surface code seems to rely
on better cabling and microwave engineering to accomodate more qubits on a small
chip. This can be expensive, both fiscally and in terms of latency.

A more effecient alternative might be the use of superconducting electronics for
implementing these controllers and ASICs. Superconductivity can be considered a
phase of matter characterized by a critical temperature, below which the material
exhibits zero electrical resistance, and all magnetic fields are expelled, in what's
called the Meissner effect.

Interestingly, the authors of [7] also give an interpretation of the accuracy
threshold for toric codes as a similar kind of phase transition, where above a threshold
physical error rate (which is analagous to temperature) the errors cause large thermal
fluctuations destroying superconductivity.

This loss of electrical resistance allows very low power dissipation. Basically we
only need power for gate switching and can transport information without drag. In
particular, a loop of electric current (�supercurrent�) will persist indefinitely with
no power source. Moreover, such low temperature regimes are also necessary to
bring about the quantum effect needed for qubits themselves to be realised. Super-
conducting qubits are essentially quantum (an-harmonic) inductance-capacitance
oscillators [16] with a non-linear inductance generated by a Josephson junction. The
quantum physics behind superconductivity and Josephson junctions also describe
other useful phenomena like quantization of magnetic flux. These enable a class
of logic families for classical computation specific to superconducting electronics
that depend on these effects, like rapid single flux quantum (RSFQ) logic [18].
They promise immense improvements over conventional computing techonologies
like CMOS, boasting picosecond level gate times, 100s of GhZ of operating frequency
and a reduction of power consumption by orders of magnitudes.
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Various organizations in the US government have invested in research involving
superconducting computers since as early as 1950s. I'm guessing the high cost of
refridgeration deterred their practical viability early on. However the recent boom
of quantum computing, coupled with the end of Moore's law has probably given it
a much larger incentive.

Currently IARPA3 is leading the research into superconducting and low power
computing. I myself had the opportunity to contribute to one of their programs while
working under Prof. Pedram here at USC. The �Supertools� program developed
toolchains for automated design of superconducting circuits.

Such EDA tools have been fine tuned and perfected for CMOS over decades.
But we're still in the early stages of designing even basic superconducting chips
like ALUs and adders, much less automating fabrication of one with enough bits.4

So implementing surface code decoder ICs is pretty far from realistic as of now.
However, that hasn't stopped research in similar directions [13], [15], [21].

5 Beyond minimum weight matchings

While minimizing weights of error chains is an excellent strategy that is effeciently
doable (and even parallelizable at least in theory) it may not be the optimal one. For
one it performs poorly in presence of correlated Y errors arising from depolarizing
noise. Secondly, the objective of a decoder is to ultimately minimize the logical
errors it makes in guessing the logical state after error detection. The optimal
strategy should maximize this conditional probability of the predicted logical state
given the observed syndrome, aptly called maximum likelihood decoding [7].

Several efficient algorithms for MLD have been proposed under varying noise
models; for example [4] (linear time decoding of erasure errors, which is simlar
to the fusion algorithm from 3), and [6] (�tensor network� decoding) that have a
theoretical threshold higher than that given by matching decoder. The report in [1]
suggests that tensor network decoding is impractical when scaling up the surface
code. Instead it relies on a modified min-weight matching decoder [11] with weights
obtained with belief propagation [20] to account for �hyperedge faults� which are
used to model more than one syndrome bit being triggered from multiple error
simultaneous data errors.

Maximum likelihood decoders rely on estimating the parameters of a probability
distribution P�. Recent advances in machine learning and artificial intelligence have
shown probability distributions to be very effectively learnable using a variety of
methods like naive Bayesian inference, Boltzmann machines and neural networks.

3. IARPA does some pretty amazing stuff. https://www.iarpa.gov/research-programs?office_name=col-
lection. You might also be interested in their upcoming LogiQ and ELQ programs that aim to create
and entangle error corrected logical qubits.

4. One might even say the problem is Superdiffficult�
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Deep neural networks are by nature highly parallelisable and have proved to
be extremely effective in learning all kinds of probability distributions just from
its samples. Moreover there already exists abundant infrastructure like GPUs and
Google's tensor processing units that are tailor made for exactly such computational
models. So, despite of the immense hype and saturation surrounding the field that
I'm not a big fan of either5, it would be highly convenient if we're able to use it for
the decoding problem at scale. Of course, tensor computation being on the other
end of the thermal spectrum can only be used in an off-chip setting.

There already has been some work in this regard [17], [10], [22]. The authors in
[17] simply construct a linear neural network mapping syndrome bits to predicted
noise and train the network to minimize the cross entropy loss between the predicted
distribution and samples generated from simulated circuit level noise. Note that this
approach works for any CSS code given its parity matrix. Meanwhile later works try
to come up with more sophisticated networks like those with convolutional layers to
decode surface codes. [17] also states that they trained a new network for different
values of p (physical error rates) which is somewhat of a drawback. Ideally it should
be a single map that is robust to variations in error rates. But the improvement in
threshold over min-weight matching was substantial.

One thing I noticed while reading them is that none of the above considered
measurement errors, i.e. they assume 2d instead of (2+1)d syndrome measurements.
So I also tried extending the idea in [17] to work with time-like errors (by using code
from [12] and some custom code) but it's quite difficult to get it working6.
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