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1 Introduction

We study the approach given in [1] to construct approximate solutions for 2D Knapsack problem
(2DK) and implement a pseudo polynomial time algorithm for a subproblem that the paper intro-
duces named 'L-2D packing' (L2DK).

2DK is a geometric version of the classical knapsack problem, where you are given a set of n
rectangles, each rectangle ri having dimensions w(ri); h(ri) and an associated pro�t c(ri), from
which we have to select a subset that �ts into a knapsack square of size N*N which maximizes the
total pro�t, de�ned as the sum of pro�ts of rectangles selected. W.L.O.G, all said dimensions can
be assumed integral. Also, the rectangles' orientations are considered to be �xed, so they can't be
rotated, and must be embedded inside the knapsack in an axis parallel manner.

L2DK attempts to solve the same problem, with additional constraints. Firstly, the shape of the
knapsack is an 'L' in Euclidean space, de�ned as [0; N ]2n([X;N ]� [Y ; N ]) for some X; Y 6N .
Secondly, all of the rectangles have the longer side at least N/2 units long (called long rectangles).
These constraints are posed only because the algorithms given in [1] for constructing the approx-
imate solutions for 2DK use L2DK as a subroutine on long rectangles in its instances.

One additional assumption made by [1] (and in general) is that for a given error margin ", the
algorithms provided (for both 2DK and L2DK) can safely discard large rectangles having both sides
longer than "N . This is because there are only at most O(1/"2) (O"(1)) such rectangles, and if an
optimal solution contains some of them, one can just use brute force without breaking polynomial
complexity.

And to make the analysis of L2DK simple, " < 1/2 is assumed from now on. This means that
the smaller sides of rectangles in L2DK instances are always smaller than N/2, allowing us to use
terms like wide or horizontal (w>N /2; h<N /2) or tall or vertical (h>N /2; w <N /2).

A 3

4
¡O(") approximate solution for 2DK with long rectangles uses the following observation �

we can shift long rectangles such that they form four stacks at the sides of the knapsack in a ring-
shaped region. This is possible since any tall rectangle can't have wide rectangles on both of its
sides laterally in any feasible solution, because of the N/2 constraint. So if we delete the least
pro�table of these four stacks, and rearrange the remaining long items into an L shaped packing,
we get at least 3/4 of the maximum pro�t from these long rectangles.

2 A pseudo polynomial time algorithm for L2DK

First some notations : let H andV be the set of all wide and tall rectangles respectively. We will
index each of the nh := jH j elements in H by decreasing order of their widths : H � (p1; :::; pnh);
w(ri)>w(ri+1). And similarly de�ne nv for V � (q1; :::; qnv) and index it by decreasing order of
their heights. Also, de�ne L(x; y) := [x;N ]� [y;N ]

We can always �nd an optimal L shaped packing where the tall rectangles are pushed to the left
and the top when sorted in this manner. Likewise to the bottom and right for the wide ones. This
can be seen as a consequence of an exchange argument where we take any optimal L shaped packing
and swap any two adjacent elements violating height (width) order, and obtain a new solution
without losing optimality.
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Now if we consider the longest vertical and horizontal rectangles, (i.e p1 and q1 respectively), and
try placing them so that they touch the bottom right and top left corners (of L(0;0)) respectively,
then there are only these possibilities :

� H and V are empty, and we are done.

� p1 (or q1) isn't a part of any optimal solution. In which case, we can recursively solve the
problem for L(0; 0) and the lists ((p2; :::; pnh); (q1; :::; qnv)) (or ((p1; :::; pnh); (q2; :::; qnv)) )

� p1 is present in some optimal solution, which means that we can combine a solution for
L(w(p1); 0); (p2; :::; pnh); (q1; :::; qnv) and p1's bottem left corner placed at (0; N ¡ h(p1))
adding a pro�t c(p1)

� similarly q1 could be placed at (N ¡w(q1); 0) and the remaining rectangles in L(0; h(q1))

The dynamic program is now straightforward, table[i; j ; x; y] stores the optimal solution for the
optimal L packing of rectangles (pi; :::; pnh); (qj ; :::; qnv) in L(x; y). The table is now populated in
a decreasing lexicographic order of tuples (i; j ; x; y); 06 i6nh; 06 j 6nv; 06x; y6N . The base
cases are table[nh+1; nv+1; x; y] = 08x; y. We can compute each of the O(N2n2) states in time
O(1) using the strictest of these lower bounds :

table[i; j ; x; y]>max (table[i+1; j ; x; y]; table[i; j+1; x; y)

table[i; j ; x; y]> c(pi)+ table[i+1; j ; x+w(pi); y] if i6nh^x+w(pi)6N ^ h(pi)6N ¡ y

table[i; j ; x; y]> c(pj)+ table[i; j+1; x; y+h(pj)] if i6nv^ y+h(pj)6N ^w(pj)6N ¡x

Finally, table[1; 1; 0; 0] contains the required solution. Using the standard back pointers trick, we
can also reconstruct one of the optimal solutions, both the chosen subset and its embedding.

Of course, the O(N2) dependency means that the algorithm isn't still truly polynomial. The
reason we need to keep the (x; y) coordinates in our dynamic program is because the end points
of the rectangles can be any integer within [0;N ]. [1] addresses this issue, and actually provides a
polynomial time approximation scheme (PTAS) by restricting the (x; y) coordinates to come only
from a polynomial (nO(1/"

1/") to be precise) sized subset of [0;N ]2, incurring a small loss in pro�t.

3 Implementation details

The attached python codes implement the algorithm given in section 2. Refer to the attached
README explaining the function of each module.

Some examples showing the strictness of 0.75 factor approximation are also provided.
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